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Executive summary 

MUSAE, a project on art-driven innovation in the food sector, employs the Design Future 
Art-driven (DFA) methodology to explore novel scenarios and inspire industrial prototypes that 
envision the future of food through the lens of sustainability, health, and societal well-being. This 
deliverable outlines findings and recommendations regarding the human-machine interaction 
(HMI) aspects of these scenarios, with a particular focus on human-robot interaction (HRI) and 
the design of multimodal interfaces. Building upon a comprehensive analysis of 12 artistic 
scenarios developed within MUSAE (Deliverables D2.1-D2.12), this document identifies both 
explicitly stated and inferred technological components, emphasising those related to robotics 
and advanced interaction modalities. This analysis is underpinned by a commitment to 
humanising technology, aiming to ensure that prototypes are not only functional but also 
intuitive, accessible, engaging, and ethically sound. The deliverable provides a detailed 
technological review of each scenario, followed by a set of comprehensive HRI guidelines for 
developers. These guidelines, informed by established HRI and HCI literature, cover key 
aspects such as robot appearance and embodiment, behavior and movement, multimodal 
communication, human-robot collaboration, ethical considerations, and specific 
evaluation metrics. Key areas of focus include the development of multimodal interfaces, the 
integration of conversational AI, immersive technologies (AR/VR), various forms of robotics 
(e.g. collaborative, social, bio-inspired), sensor-based systems, and their evaluation using 
relevant metrics. The overarching goal is to provide artists and developers with actionable 
recommendations to ensure that the MUSAE prototypes are both technologically advanced and 
deeply human-centered, fostering broader acceptance, facilitating social interaction, and 
promoting a more profound impact on the future of food. 
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Introduction 
Within the MUSAE project, "scenarios" serve as powerful tools for envisioning potential futures 
in the realm of food, art, and technology. Developed through the unique Design Future 
Art-driven (DFA) methodology, each scenario paints a vivid picture of a possible future, 
exploring how societal shifts, technological advancements, and evolving cultural values might 
intersect to shape our relationship with food. These narratives are not meant to be predictive, 
but rather provocative, sparking dialogue and inspiring innovation by presenting a unique 
ecosystem of interconnected elements. These elements can be trends, personas, describing 
fictional characters representing different user types, and technologies. For example, the 
aforementioned scenario delves into a world where agroforestry initiatives, driven by AI, 
robotics, and a philosophy of interconnectedness, are reshaping urban landscapes and 
challenging traditional notions of food production and consumption, prompting us to consider 
the implications and opportunities that such a future might hold. 

Each MUSAE scenario, while presenting a cohesive vision of a potential food future, serves as 
a springboard for the development of diverse projects, each interpreting and realising the 
scenario's essence in a tangible way. While a scenario outlines a specific goal and positioning, 
for instance, highlighting the importance of local food ecosystems and community engagement, 
it can inspire a variety of projects, from interactive educational tools to prototypes of innovative 
food-sharing platforms. Although the specific user interactions, workflows, and detailed 
functionalities will naturally differ based on each project's scope and aims, the foundational 
technological components can be anticipated and generalised. These might include, for 
example, user-friendly interfaces for connecting local producers and consumers, data 
visualisation tools for showcasing the environmental impact of local food systems, and 
potentially sensor networks to gather data from community gardens. Implementing these 
technologies involves addressing practical challenges, such as ensuring ease of use for diverse 
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audiences, presenting data in a meaningful and accessible way, and potentially integrating 
different technological components. Thus, each project emerging from a scenario must 
thoughtfully adapt these core technological elements to its specific needs and context, while 
remaining aligned with the overarching vision of the scenario. 

The task underpinning this deliverable is focused on mentoring and supporting artists and 
developers to improve the human-machine interaction component of their projects. By 
anticipating their potential requirements, we provide guidance on state of the art tools and 
methods to design multimodal and social interfaces. Complex project requirements originating 
from the new scenarios within the MUSAE project also extend these tools and methods to the 
human-robot interaction of computationally creative solutions, thereby assisting and mentoring 
artists and end-users in refining the interaction of people with their product when developing 
their industrial prototype. This contributes to humanising the technological prototype enhancing 
their acceptance by the larger audience. 

To achieve these goals, this deliverable embarks on a thorough technological review of the 
twelve MUSAE scenarios, identifying both explicitly stated and implied technological 
components that underpin each vision.  Building upon this foundation, we abstract these diverse 
technological needs into broader categories, such as Generative AI, Conversational Agents, 
Immersive Technologies, Robotics, and Sensor Networks, highlighting their potential 
applications and associated challenges within the context of the scenarios. This process allows 
us to anticipate the technological landscape of potential projects, even in the absence of 
concrete project specifications. Furthermore, we delve into relevant Human-Computer 
Interaction (HCI) and Human-Robot Interaction (HRI) literature to establish a framework for 
designing effective and engaging multimodal interfaces. This framework informs a set of 
practical interaction guidelines, tailored to each scenario, that developers can utilise to 
implement their projects, ensuring that the resulting prototypes are not only technologically 
sound but also user-friendly, accessible, and aligned with the humanistic spirit of the project. 

This investigation is driven by several key considerations, shaping both the scope and the 
methodology of our analysis. 

Focus on Multimodal Interfaces: This deliverable prioritises multimodal interfaces for 
human-machine interaction, exploring how speech, gesture, touch, visual displays, and other 
modalities can be potentially reused and integrated to create rich, natural, and intuitive 
interactions. We advocate for a holistic approach, assuming a rich and vast sensory input 
landscape. For example, we consider how visual data from cameras, tactile feedback from 
sensors, auditory input, and even olfactory or gustatory information, where applicable, can be 
combined to enhance the user experience. In this regard, we leverage the Human-Robot 
Interaction (HRI) literature as a valuable framework, given its established methodologies for 
addressing interactions between humans and complex computational systems in a variety of 
contexts, including scenarios with a strong emphasis on a social, collaborative, or educational 
component. This framework helps us generalise the potential needs of computational systems 
where a human-machine interaction component is anticipated or envisioned. This is mostly 
motivated by our team's expertise in this area. 

 ​  
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Humanising Technological Prototypes through Interaction Design: A key objective is to 
enhance the acceptance and impact of the technological prototypes by a wider audience. By 
applying human-centered design principles, a project can make the interaction more natural, 
intuitive, and engaging.  Crucially, the efficacy of a system often hinges on the design of the 
interaction workflow. A well-designed interaction can significantly influence user acceptance, 
perceived usability, and overall satisfaction. Therefore, we emphasise the importance of 
considering key HRI metrics, such as task completion time, error rate, user satisfaction, 
perceived workload, and learnability, to ensure that the interaction is not only functional but also 
enjoyable and efficient. By anticipating and addressing potential usability issues through careful 
interaction design, we aim to create prototypes that are readily adopted and seamlessly 
integrated into users' applications. 

Assisting and Mentoring Artists and End Users: While the analysis provided in this 
deliverable is scenario-centric, aiming to generalise across various potential projects and 
implementations that share the same vision and direction, our team is also actively involved in 
providing ongoing guidance and support to artists and end-users. This involves sharing 
state-of-the-art tools, methods, and best practices in HMI design, drawing upon expertise 
developed in previous projects. This mentoring process is iterative and collaborative, ensuring 
that the prototypes evolve in a way that aligns with both the artistic vision and the principles of 
effective human-machine interaction. At the time of submission, we are still actively supporting 
artists and other stakeholders of the consortium. 

Research questions 
The primary research question (RQ1) providing the basis for this investigation is to explore 
which technology can support the development of the scenarios, and how this can be shaped to 
address the foreseen expectations and challenges. Whenever a scenario explicitly envisions 
elements of human-machine interaction, principles and methodologies in HCI and HRI can be 
utilised to humanise the technological prototypes developed in the MUSAE project. To address 
this main research question, we have identified four sub-questions: 

●​ RQ1-1: Technological Components of a MUSAE scenario: This sub-question aims to 
identify the technological components that make up a MUSAE scenario. A clear 
understanding of these components is essential for determining the feasibility of 
implementing effective interactions. 

●​ RQ1-2: Explicit HM Interaction Component: This sub-question investigates whether a 
particular scenario explicitly envisions a human-machine (HM) interaction. This 
influences the extent to which HCI/HRI research can be applied. 

●​ RQ1-3: Humanising the Interaction Component: This sub-question explores how to 
humanise the interaction component of a scenario to enhance its acceptance by a 
broader audience. This involves identifying and implementing design principles and 
strategies that make the interaction more natural, intuitive, and engaging. 

●​ RQ1-4: Risks Associated with the Use of Technologies: If applicable, this 
sub-question examines the main risks associated with the use of specific technologies in 
a scenario. It is important to consider ethical, societal, and environmental implications to 
ensure responsible and sustainable development. 

 ​  
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By answering these sub-questions, we aim to enable a comprehensive analysis of how HRI 
research can contribute to the humanisation of technological prototypes in MUSAE. Our 
findings aim to inform the design and development of future prototypes, ensuring that they are 
more user-centered, engaging, and ethically aligned. 

Methodology and approach 
To gain a comprehensive understanding of the technological requirements for the 12 scenarios 
developed in MUSAE, we conducted a review, taking inspiration for the process from Semeraro 
et al. (2023), of their projects described in Deliverables 2-1 to 2-10. Our primary goal was to 
identify the technological components envisioned by the artists following the application of the 
Design Future Art-driven (DFA) method. This review allowed us to abstract the underlying 
technological needs and provide tangible support for the implementation of prototypes driven by 
our research questions. 

We paid close attention to instances where the artists explicitly mentioned technological 
elements, either by identifying them as trends or within the defined domains and scenarios. 
These components were further elaborated to ensure a clear understanding of their intended 
functionality. However, we also encountered cases where the technological components were 
not explicitly stated. In such instances, we carefully examined the project proposals, considering 
aspects such as the desired user experience, interaction modalities, and the overall artistic 
vision. Through diligent analysis, we inferred the technological needs that were implied but not 
explicitly expressed. It is important to note that our focus was on identifying technological 
components at a high to medium level of detail. Rather than specifying specific models or 
solutions, which is beyond the scope of the deliverables, we aimed to capture the broader 
categories of technology required to realise the artistic concepts. For example, we might identify 
the need for an image generation system or wearable technologies, without delving into specific 
product recommendations. 

Once we had collected and summarised the main technological needs from all projects, we 
proceeded to the second step. Recognising that several projects envisioned or implied an 
interaction component, we turned to the human-computer and human-robot interaction literature 
for guidance. Drawing on established principles and best practices from these fields, we 
provided guidelines to support the design and development of effective and engaging 
interactive experiences within the MUSAE art projects. 

By combining a thorough review of the project proposals with insights from human-computer 
and human-robot interaction research, we aimed to provide a solid foundation for the 
implementation of MUSAE's prototypes. Our goal was to empower the artists with the 
technological knowledge and design principles necessary to bring their artistic visions to life in a 
meaningful and impactful way. This analysis  was completed in July 2024, and is based on the 
information that was released prior to that date, which is available at Technical Reporting D2
. 
 

 ​  

https://drive.google.com/drive/folders/11Ivw2It2e0AMcyjpsDdVPuRSqzYAsq7-?usp=sharing


D4.5 - UX INTERACTION GUIDELINES 

 
8 

Structure of the Deliverable 

This deliverable begins with an introduction outlining the MUSAE project's goals, the role of 
scenarios, and the importance of human-centered design, followed by the research questions 
and the methodology used for analysing the 12 scenarios. A detailed technological review of 
each scenario is then presented, outlining their main elements and identifying both explicitly 
stated and inferred technological components. This is followed by a consolidated outline of the 
identified technologies across all scenarios, categorised for clarity. The core of the deliverable 
focuses on Human-Robot Interaction (HRI) design guidelines, providing actionable 
recommendations for developers. These guidelines cover crucial aspects such as robot 
appearance and embodiment, behaviour and movement, multimodal communication, 
human-robot collaboration, and ethical considerations. A dedicated section expands on 
guidelines for multimodal HRI, emphasising the appropriate choice of modalities, seamless 
integration, redundancy, feedback, and cognitive load. Finally, the deliverable concludes with a 
section on HRI evaluation metrics, outlining key performance indicators relevant to the MUSAE 
context, including task performance, safety, interaction quality, and context-specific metrics 
such as educational impact and community engagement. 

1) Technological review of MUSAE scenarios 
As described before, a scenario can be defined as an archetypical description of the vision and 
the desiderata behind its tangential implementations . It relies on an imaginative and iterative 
process – stimulating creative expression and divergent thinking. Each scenario is made of 
several associated: trends, which can be seen as related work addressing similar desiderata; 
elements, the main components, or building blocks of the scenario; and personas, as fictional 
characters trying to generalise different categories of users involved. In this deliverable, the 
level of detail of each scenario varies depending on the technical positioning of its original 
proposition. For example, a scenario that has already anticipated a number of technological 
aspects related to either trends, elements, or persona, will include more information in order to 
properly contextualise the interaction guidelines. 

S1: The Microbial Renaissance: a Culinary Tech Revolution 

 
 
Outline. The Microbial Renaissance era uses cutting-edge technology to transform culinary 
practices and promote sustainable food innovation. Microbes can be used as 'cell factories' to 

 ​  
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produce animal-based ingredients and reduce the depletion of natural resources. Precision 
fermentation enables the creation of specific proteins, carbohydrates, fats, vitamins, or aromas. 
These ingredients can be shaped, flavored, and textured using digital production techniques. 
Imagining novel food products that are edible and distinct from existing products is a challenge. 
 
By leveraging artificial intelligence and food engineering technologies, this scenario aims to 
transcend the constraints of our imagination and bring about a paradigm shift in the products we 
consume. However, mere dietary modifications are insufficient to catalyse this culinary 
transformation. Instead, a cultural revolution is needed - one that permeates the entire 
community and ignites a shared passion for an alternative approach to food production, 
preparation, consumption, and social interactions centered around food. 

What are the main technological components that can be inferred from this project? 

●​ Content generation (inferred). Generative AI methods can be used to create visuals 
and immersive graphics that can anticipate how these facilities (e.g. the High 
Fermentation Labs), food creations, recipes and new ingredients may look like. In this 
case, Generative AI is used as a tool for explorative computational creativity to project 
users in the scenario defined by the artists. This can involve generating images, videos, 
or even interactive 3D models of novel food products, allowing users to visualise and 
interact with them before they physically exist. Furthermore, generative AI can be used 
to create virtual environments simulating the experience of visiting and working in the 
High Fermentation Labs, enhancing the sense of immersion and engagement. 

●​ Conversational agents for education and training (inferred). In the education and 
training section of the high-tech fermentation facilities, both consumers and 
professionals are welcomed to ask questions and gain knowledge about 
microbial-based foods. In an interactive and visual way, visitors can gain insight into 
what microorganisms are, how they can be used to produce ingredients, and get 
inspiration on how to grow microbes themselves at home and cook with these new 
ingredients. Conversational AI methods specialised on domain knowledge can be used 
to implement personalised learning pathways in order to educate users and eventually 
persuade those who are sceptical about the food transition. These agents can be 
designed to adapt to different learning styles and levels of expertise, offering customised 
explanations, demonstrations, and even interactive quizzes. They could also guide 
users through virtual tours of the fermentation facilities, providing real-time information 
and answering questions as they arise. Further expanding the concept, conversational 
agents can act as virtual mentors, providing personalised feedback on users' microbial 
cultivation and cooking experiments. They can offer suggestions for improvement, 
troubleshoot issues, and even provide emotional support to encourage persistence and 
exploration, using principles of motivational interviewing and other behaviour change 
techniques. 

●​ Immersive environments (inferred). Augmented reality technologies can replace the 
holographic interactive displays envisioned by the artist to show “the latest microbial 
strains” that are expected to decorate the streets in the foreseen scenario. AR overlays 
can provide real-time information about the showcased strains, their properties, and 
their potential applications in food production. Furthermore, AR can be used to create 

 ​  



D4.5 - UX INTERACTION GUIDELINES 

 
10 

interactive games and simulations that educate the public about microbial-based food in 
an engaging and memorable way. For example, users could participate in a virtual 
scavenger hunt, using their mobile devices to locate and learn about different microbial 
strains hidden throughout their city. AR can also be used to enhance the dining 
experience, providing interactive visualisations of the nutritional content, origin, and 
sustainability impact of the food on their plate. 

Other devices, and technologies envisioned by this project are purely speculative in nature. 
These include devices to analyse their latest microbial-based food creations for nutritional 
values, safety, texture, taste and aroma before moving on to tasting; as well as the “Microbial 
Synthesiser” and the “Microbe Spectrum Scanner”. 

Does this project envision a HM interaction? 

Although not explicitly stated, this project implicitly envisions a strong HM interaction 
component, particularly in the areas of education, training, and persuasion. The scenario 
highlights the need for a cultural shift towards embracing microbial-based foods, and technology 
is seen as a key enabler in achieving this transition. The personas identified in the scenario 
further emphasise the importance of addressing different levels of acceptance and skepticism 
towards microbial food, suggesting the need for tailored interactions. 

As highlighted in the initial text, communication and persuasion are central to the proposal. 
Conversational AI, particularly through empathetic conversational agents and social robots, 
has the potential to play a significant role in achieving personalisation and persuasion in this 
context. These agents could infer users' emotional states, desires, and intentions, creating a 
more personalised and effective interaction. For example, a conversational agent could detect a 
user's hesitation or concern about microbial food through their language and adapt its 
responses accordingly, providing reassurance, addressing specific concerns, and highlighting 
the benefits that are most relevant to that individual. Furthermore, the use of social robots can 
enhance the interaction by providing a physical presence and leveraging non-verbal cues, 
such as gestures and facial expressions, to build rapport and trust. A social robot could, for 
instance, offer a friendly smile and a welcoming gesture when greeting a visitor to a 
fermentation facility, creating a more positive and engaging experience. Robots could guide 
visitors through the labs. 

The text correctly identifies that societal and cultural biases, as exemplified by Persona 3 
(Johan), who is completely skeptical, and Persona 2 (Omar), who is not yet fully convinced, can 
pose a significant challenge. Conversational agents and social robots can address this 
challenge by providing a non-judgmental space for individuals to express their views and 
concerns. The ability of these agents to empathise and respond appropriately can create a safe 
and supportive environment for open dialogue, potentially leading to a shift in attitudes. 

If so, how can this technology be made more human? 

To make the technology more human-centered, the following guidelines can be considered: 

 ​  



D4.5 - UX INTERACTION GUIDELINES 

 
11 

●​ Personalisation: Conversational agents and social robots should be designed to adapt 
to individual users' needs, preferences, and levels of understanding. This can be 
achieved through: 

○​ User profiling: Gathering information about users' prior knowledge, attitudes, 
and motivations regarding microbial food. 

○​ Adaptive dialogue: Tailoring the conversation style, language complexity, and 
information provided based on the user profile. 

○​ Emotional intelligence: Detecting and responding to users' emotional states, 
providing empathy and support. For instance, if a user expresses frustration or 
confusion, the agent can adjust its approach, offering encouragement or 
simplifying the information. 

●​ Transparency and Explainability: The decision-making processes of AI systems, 
particularly in the context of content generation and personalised recommendations, 
should be transparent and explainable to users. This can foster trust and understanding. 
For example, if a Gen AI system creates a novel food product, it should be able to 
explain the reasoning behind its design, highlighting the microbial strains used and their 
properties. 

●​ User Control and Agency: Users should have control over their interactions with the 
technology and be able to customise their experience. This can include options to adjust 
the level of detail provided, choose different learning pathways, or opt-out of certain 
features. For instance, a user should be able to ask a conversational agent to provide 
more in-depth information about a particular topic or to skip a section they are already 
familiar with. 

●​ Multimodal Interaction: Combining different interaction modalities, such as voice, 
touch, and gesture, can create a more natural and intuitive user experience. For 
example, a user could interact with a social robot using voice commands, touch its 
screen to access information, and use gestures to navigate through menus or control 
virtual objects in an AR environment. In addition, users could use their smartphones to 
interact with robots (Wu et al 2020). 

●​ Context Awareness: Conversational agents and robots should be aware of the context 
of the interaction, including the physical environment, the ongoing conversation, and the 
user's past interactions. This can enable them to provide more relevant and timely 
information and assistance. For example, a robot guiding a visitor through a 
fermentation facility should be able to adapt its explanations based on the visitor's 
location and the specific exhibits they are viewing. Similarly, a conversational agent 
should remember previous interactions with a user, avoiding repetition and building upon 
their existing knowledge. 

What are the main risks associated with the use of these technologies? 

While the envisioned technologies offer exciting possibilities, it is crucial to consider the 
potential risks. 

●​ Bias and Fairness: AI systems, including generative AI and conversational agents, can 
inherit and perpetuate biases present in the data they are trained on. This could lead to 
unfair or discriminatory outcomes, such as promoting certain types of microbial food 

 ​  
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over others based on cultural biases or reinforcing existing stereotypes. To mitigate this 
risk, it is essential to use diverse and representative training data, carefully evaluate AI 
models for bias, and implement mechanisms for detecting and correcting biased 
outputs. 

●​ Misinformation and Manipulation: Generative AI could be used to create realistic but 
false or misleading information about microbial food, potentially harming public 
perception and trust. Conversational agents could also be used to manipulate users' 
opinions or behaviors through persuasive techniques. To address this, it is crucial to 
develop methods for detecting and countering AI-generated misinformation, promote 
media literacy among users, and design conversational agents that adhere to ethical 
guidelines for persuasion. 

●​ Privacy and Security: The use of personal data to personalise interactions raises 
concerns about privacy and data security. It is essential to implement robust data 
protection measures, obtain informed consent from users, and be transparent about how 
data is collected, used, and stored. 

●​ Overreliance and Deskilling: Overdependence on technology for information and 
guidance could lead to a decline in critical thinking and traditional skills related to food 
production and preparation. It is recommended to strike a balance between leveraging 
technology and preserving valuable human skills and knowledge. 

●​ Accessibility and Equity: Unequal access to technology could exacerbate existing 
social and economic inequalities, creating a divide between those who can benefit from 
the Microbial Renaissance and those who cannot, in the context of the envisioned 
scenario. Design efforts should be made to ensure that the technology is accessible to 
all, regardless of socioeconomic status, location, or ability. 

●​ Ethical Considerations of Persuasive Technology: The use of conversational agents 
and social robots to persuade individuals to adopt microbial-based foods raises ethical 
questions about autonomy and informed consent. It is important to ensure that 
persuasive techniques are used responsibly and transparently, avoiding manipulation 
and respecting individuals' right to make their own choices. Guidelines for ethical 
persuasion in human-computer interaction should be followed, such as providing users 
with clear and accurate information, avoiding deceptive tactics, and allowing users to 
easily opt-out of persuasive interactions. 

 

 

 ​  



D4.5 - UX INTERACTION GUIDELINES 

 
13 

S2: Soil Skinships: soil fertility and our reproductive futures 

 
Outline. The narrative of human creation deeply intertwined with soil, shaping our cultural 
landscapes and reflecting our bond with this fundamental life-giving element. However, 
intensive agriculture practices have endangered our soil, leading to the loss of fertile topsoil and 
a looming crisis. This demands a reimagining of our relationship with soil. 
 
The Symbiocene era, set in 2034, introduces the concept of "skinship" between human skin and 
Earth's skin, emphasising the symbiotic connection between the two. This future embraces 
technological innovations like augmentation devices that provide real-time data on soil health 
and mirror this information through sensations felt by the wearer. This intimate connection 
fosters a profound understanding of the interplay between soil fertility and human reproductive 
health. 
 
Technological trends 
 
Augmented embodiment and immersive experiences were identified as the main technological 
trends extending and enhancing human physicality and sensory experiences, by immersing 
individuals in their environments. In the "Soil Skinships" scenario, this trend materialises 
through advanced augmentation devices integrated with human skin. These devices not only 
enable a profound, tactile connection with the Earth's soil but also provide real-time feedback 
on its health and fertility. This symbiotic interaction fosters a unique understanding and 
appreciation of the earth, blurring the lines between the human body and the natural world. By 
physically feeling the state of the soil and aligning it with their own health and reproductive 
capacities, individuals experience an unprecedented level of immersion in their ecosystem, 
embodying a future where human well-being is inextricably linked to the health of our planet. 
This trend encapsulates a transformative approach to environmental stewardship and 
sustainable living, rooted in a deep, sensory connection with the Earth. Overall, this project 
aligns with the identified technological trend. 

What are the main technological components that can be inferred from this project? 

The project identifies the main technological component in the envisioned Augmentation 
devices (Scenario Element 5). These are described as sophisticated sensors and implants 
seamlessly integrated with human skin. Through these devices, people become connected with 
the land beneath their feet. When in contact with the soil, it collects real-time data about its 
nutrients, health and fertility. This data is translated into physical sensations that the wearer can 

 ​  
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feel. These can be comfortable sensations when in balance, but can also feel uncomfortable, 
like simulated menstrual cramps. The devices also collect data and provide personalised 
insights into personal reproductive health. Balancing the different outputs takes active 
engagement, learning and understanding. 

Overall, the augmentation devices can be associated with the following technologies. 

●​ Sensors and IoT allow to trace the status of the soil, in order to collect data regarding. 
A variety of sensors exist to collect valuable data from soil, aiding in precision 
agriculture, environmental monitoring, and research. Soil moisture sensors are 
perhaps the most common, measuring the volumetric water content or soil tension to 
optimise irrigation and water management. These sensors can utilise capacitance, 
resistance, or electromagnetic technologies. Temperature sensors help track soil heat 
fluctuations, important for seed germination and plant growth. Electrical conductivity 
sensors determine the salinity levels, influencing crop selection and fertiliser 
application, while additional sensors can measure soil pH, nutrient content (e.g., 
nitrogen, phosphorus, potassium), and even the presence of specific gases like carbon 
dioxide. This wealth of data, often collected continuously and wirelessly transmitted, 
typically allows for informed decision-making in the context of resource conservation and 
improved crop yields. In the context of this project, these sensors would provide the data 
that can be processed in further steps. 

●​ Modality transformations (inferred) offer a powerful means to diversify and enhance 
how we interact with soil data. By converting it into different modalities such as colours, 
images, and sound, we unlock new possibilities for data exploration, understanding, and 
communication. Example of modality transformations include: 

○​ Visualising soil data as colours allows us to perceive patterns and variations 
that might not be readily apparent in numerical or textual formats. For instance, 
different colours can represent different levels of soil moisture, nutrient content, 
or pH, creating a visual map of soil health. This approach can be particularly 
useful for quickly identifying areas of concern or for communicating complex data 
to non-expert users (e.g. Sacha et al., 2017). 

○​ Converting soil data into sound introduces an auditory dimension to data 
exploration. By mapping soil properties to musical notes or sound frequencies, 
users can "listen" to the soil. This auditory representation can be particularly 
effective in conveying temporal changes or trends in soil data. For instance, a 
time series of soil moisture measurements can be transformed into a 
soundscape where the pitch or volume of the sound reflects the moisture levels 
over time. For example, a similar sonification strategy in this domain was 
attempted from colleagues of UWE Bristol1. 

●​ Wearable devices and haptic technologies are natural candidates to implement the 
augmentation devices. On one hand, this would facilitate the collection of physiological 
data from the users, which is necessary to achieve the expected level of symbiosis 
between soil and human; and, on the other hand, to actuate the (modality transformed) 
soil data through haptic feedback, so that the user can perceive its conditions in real 
time. Haptic feedback can be delivered through various means, such as vibration, 

1 https://www.uwe.ac.uk/news/sound-of-the-underground 
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pressure, or texture changes, providing a rich and nuanced sensory experience (e.g. 
Culbertson et al., 2018). For example, a wearable device could vibrate gently to indicate 
healthy soil conditions or deliver a more intense sensation to signal a problem, such as 
low nutrient levels or excessive dryness. 

Does this project envision a HM interaction? 

Users’ engagement is envisioned to control the interactions between the soil and the personal 
inputs. The interaction is thus expected to balance/gate these two input streams. However, the 
interaction appears to be unidirectional, meaning that the conditions of the soil can affect the 
human, but the physiological data collected from the latter does not affect the soil. By 
interacting with the device, users can thus balance the personal and the soil signals. This 
suggests a human-in-the-loop system, where the user actively interprets and responds to the 
feedback provided by the augmentation device. 

If so, how can this technology be made more human? 

To make this technology more human-centered and enhance the user experience, several 
approaches can be considered. 

●​ Personalised Data Fusion and Interpretation: Integrating physiological data with soil 
data requires sophisticated data fusion techniques. Machine learning algorithms, 
particularly deep learning models, can be employed to analyse patterns and correlations 
between the user's physiological state (e.g., heart rate, skin temperature, hormonal 
levels) and soil conditions (e.g., moisture, nutrient levels, pH). These models can learn 
individual user profiles and adapt the feedback accordingly. For example, a user who is 
particularly sensitive to environmental changes might receive more subtle haptic 
feedback, while a user who prefers more direct feedback might receive stronger 
sensations. This is inline with research on personalised affective computing (e.g. Chanel 
et al., 2011). 

●​ Adaptive and Context-Aware Feedback: The system should be able to adapt the 
feedback based on the user's current context and activity. For instance, if the user is 
engaged in strenuous physical activity, the system might reduce the intensity of haptic 
feedback to avoid distraction or discomfort. Conversely, if the user is in a resting state, 
the system could provide more detailed and nuanced feedback. Context awareness can 
be achieved through the integration of various sensors and data sources, such as GPS, 
accelerometers, and environmental sensors. Research on context-aware computing 
provides relevant methodologies (e.g. Baldauf et al., 2007). 

●​ Multimodal Feedback Integration: While haptic feedback is central to this scenario, 
integrating other modalities, such as visual or auditory feedback, can enhance the user 
experience. For example, a visual display on a wearable device could provide 
supplementary information about soil health, while subtle auditory cues could reinforce 
haptic sensations. The design of multimodal feedback should follow principles of 
perceptual congruence, ensuring that different modalities complement each other and 
avoid creating cognitive overload (e.g. Spence & Driver, 2004). For instance, a visual 
display could be used to show trends in soil data over time, while haptic feedback 
provides real-time information about the current state of the soil. 
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●​ User Control and Customisation: Users should have control over the intensity, 
frequency, and type of feedback they receive. This can be achieved through a user 
interface that allows them to adjust settings, set preferences, and even create custom 
feedback profiles. Allowing users to tailor the system to their individual needs and 
preferences is essential for user acceptance and satisfaction (e.g. Nielsen, 1993). Users 
should be able to adjust the sensitivity of the haptic feedback, choose which soil 
parameters they want to be informed about, and even define their own mappings 
between soil data and sensory feedback. 

●​ Explainable AI (XAI): As AI plays a crucial role in data processing and feedback 
generation, it is important to incorporate principles of explainable AI (XAI). Users should 
be able to understand why the system is providing certain feedback and how it is 
interpreting their physiological data and soil data. This can be achieved through 
visualisations, textual explanations, or even conversational interfaces that allow users to 
query the system (e.g. Miller, 2019). For example, the system could explain why it is 
suggesting a particular course of action, such as reducing watering or adding nutrients 
to the soil, based on the data it has collected and the user's physiological state. 

What are the main risks associated with the use of these technologies? 

The envisioned technology presents several potential risks that need to be addressed: 

●​ Data privacy and security: The collection and use of sensitive physiological data raise 
significant privacy concerns. Robust data encryption, anonymisation techniques, and 
strict access control measures are necessary to protect user data. Compliance with 
relevant data protection regulations (e.g., GDPR in Europe) is essential. Furthermore, 
users should be fully informed about what data is being collected, how it is being used, 
and with whom it might be shared. 

●​ Data misinterpretation and overreliance: The accuracy and reliability of the data 
collected by sensors and its interpretation by AI algorithms are crucial. Errors or 
misinterpretations could lead to inappropriate actions, potentially harming both the user 
and the environment. Regular calibration of sensors, validation of algorithms, and clear 
communication of the limitations of the technology are essential. Users should be 
educated about the potential for errors and encouraged to use their own judgment in 
conjunction with the feedback provided by the system. 

●​ Health and safety: The use of wearable devices that deliver haptic feedback raises 
potential health and safety concerns, particularly regarding long-term use. It is important 
to ensure that the intensity and frequency of haptic sensations are within safe limits and 
do not cause discomfort, pain, or injury. Ergonomic design and thorough testing are 
necessary to minimise risks. Furthermore, the potential psychological effects of 
continuous sensory feedback should be investigated. 

●​ Equity and accessibility: Access to this technology may be unevenly distributed, 
potentially exacerbating existing inequalities. Efforts should be made to ensure that the 
technology is affordable and accessible to diverse populations, including those in 
developing countries and rural areas. Design for inclusivity and universal accessibility 
should be considered from the outset. For instance, providing alternative feedback 
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modalities, such as visual or auditory cues, can make the technology accessible to 
individuals with different sensory abilities. 

●​ Unintended consequences: The widespread adoption of this technology could have 
unintended social, environmental, or ethical consequences. For example, it could lead to 
a commodification of soil health or create new forms of social stratification based on 
access to technology. Careful consideration of potential impacts and engagement with 
stakeholders from diverse backgrounds are crucial to anticipate and mitigate negative 
consequences. For example, if the technology becomes widely used by farmers, it could 
lead to changes in land use practices or agricultural policies that have broader 
environmental implications. 

S3: Food Beyond Food: what is food without its origin? 

 
Outline. Food is a powerful political force that defines borders, shapes identities, and forges 
alliances. Traditionally, the origin of a product was considered a major determinant of its quality, 
with distinguished products from diverse regions gaining prestige. However, climate change has 
reshaped the planet, making it necessary to embrace innovative methods to ensure the 
continued production of desired products sustainably. 
 
This project fast-forwards to 2044, where the widespread acceptance of scientific 
advancements and the urgent need to impose new ways of producing food have led to the 
introduction of lab-grown meat, genetically modified fermented ingredients, and hydroponically 
grown vegetables in regular supermarkets. A movement called 'Anti-Extinction Ac' aims to 
redistribute global food production, leveraging scientific advancements to standardise food 
quality and characteristics worldwide. 

Technological trend 

Related to food safety, the artists identified the following technological trends. Blockchains are 
described as emerging as robust solutions to ensure the traceability and authenticity of food 
products. Additionally, smart packaging technologies, such as sensors, are being integrated 
to monitor critical parameters in real-time, ensuring product integrity from production to 
consumption. Connected packaging, utilising NFC technology, allows consumers to access 
comprehensive information about a product, including its origin and safety standards. 
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One element of this project is food testing (Element 4) through Food Forensics. Food Forensics, 
originally dedicated to uncovering food fraud related to authenticity and traceability, has shifted 
its role to ensure the prevention of trafficking in real animals or wild plants. This transition 
signifies a departure from human-centric aspects to broader concerns involving environmental 
conservation and ethical practices. 

Based on the technological trends and elements of this project, the artist created and selected 
the “Forensic Food” domain. Rooted in the investigative methodologies pioneered by Forensic 
Architecture, this domain delves into the intricate interplay of food-related technologies and 
forensic analysis, applying emergent forensic technologies to unveil instances of 'less visible' 
food fraud. Beyond the surface, this exploration peels back layers to expose the deeper 
dimensions of food crime, emphasising the need to visualise violence against humanity and the 
environment (“ecocide”) beyond conventional perceptions of the food chain. Guided by the 
principles of interdisciplinary investigation, the domain aspires to redefine our comprehension of 
the less visible impact of the food chain, weaving together technology, ethics, justice, and 
sustainability. Through this holistic exploration, the vision is to empower individuals, fostering a 
conscientious approach to our interconnected world and enabling informed dietary choices. 

What are the main technological components that can be inferred from this project? 

The project encompasses two main challenges: (i) the identification of “food frauds” through 
food testing; and (ii) the visualisation of a food fraud (ecocide) in raising awareness of the 
consequential impact of the food chain. 

●​ Food Fraud Identification: The first challenge is said to be tackled by using 
food-related technologies and forensic analysis methods. This can be interpreted as 
employing data mining and machine learning techniques to analyse data from various 
sources, such as blockchain records, sensor data from smart packaging, and supply 
chain databases. These techniques can identify patterns and anomalies indicative of 
food fraud. For example, classification algorithms can be trained to distinguish between 
authentic and fraudulent products based on their chemical composition, origin, or 
processing history. Anomaly detection algorithms can be used to flag unusual patterns in 
supply chain data that might indicate illicit activities, such as the substitution of 
ingredients or mislabeling of products (Chandola, 2009). 

●​ Visualisation and Modality Transformation: The second challenge can be associated 
with a broad range of data transformation and visualisation methods. These methods 
aim to map a source modality (e.g., a description of the ecocide, together with 
numerical/quantitative evidence outlining its impact on the food chain or the 
environment) to a target modality that can be effectively communicated to users (sound, 
music, image, video, an infographic, etc.). This could involve techniques like: 

○​ Sonification: Transforming data into sound to represent different aspects of the 
ecocide, such as the severity of environmental damage or the scale of illegal 
activities. For more information on sonification techniques, we refer to (Hermann 
et al., 2011). 

○​ Information/Data Visualisation: Creating visual representations of data, such 
as charts, graphs, and maps, to illustrate the impact of food fraud on the 
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environment and society. This can include interactive visualisations that allow 
users to explore the data and uncover hidden relationships. 

○​ Generative AI: Using generative models, such as GANs (Goodfellow et al., 
2014), VAEs (Kingma & Welling, 2013), or Stable Diffusion (Rombach et al., 
2022), to create images, videos, or even virtual environments that depict the 
consequences of ecocide. 

Does this project envision a HM interaction? 

The project does not explicitly envision a HM interaction in the traditional sense (e.g., a direct 
interaction with a robot or a conversational agent). However, it does anticipate the need for a 
visualisation or modality transformation method to provide sufficient control to the user. This 
implies an interaction where the user can manipulate parameters or explore the data 
representation to gain a deeper understanding. This method would likely involve a 
modality-specific interface (e.g., a graphical user interface with sliders, buttons, and interactive 
visualisations) that would allow the user to interact with the system in a way that is natural and 
intuitive. 

If so, how can this technology be made more human? 

Humanising the technology for visualising ecocide involves designing the interaction and 
representation to be more intuitive, engaging, and impactful. Here we provide a few insights 
from an HCI perspective. 

●​ User-Centered Design: Applying user-centered design principles (e.g., Norman, 2013) 
is crucial. This involves understanding the target audience (e.g., general public, 
policymakers, activists), their needs, and their existing knowledge about food fraud and 
ecocide. Iterative design and user testing can help refine the interface and ensure 
usability at deployment. 

●​ Interactive Exploration: Instead of presenting a static visualisation, the system should 
allow users to interactively explore the data. This could involve: (i) filtering and 
selecting, allowing users to filter data based on different criteria (e.g., type of food 
fraud, geographical location, time period) and select specific aspects they want to 
investigate further; (ii) drilling down, providing the ability to drill down into the data to 
get more detailed information about specific instances of ecocide; and (iii) 
customisation, enabling users to adapt the visualisation based on their criteria, such as 
choosing different colour schemes or data representations. 

●​ Narrative and Storytelling: Integrating storytelling elements can make the data more 
relatable and engaging. This could involve presenting case studies of specific ecocide 
events, highlighting the impact on individuals and communities, or showing the chain of 
events that led to the environmental damage. Combining data visualisation with 
narrative techniques can create a more powerful and memorable experience (see e.g., 
Segel & Heer, 2010). 

●​ Emotional Engagement: While maintaining objectivity, the visualisation can be 
designed to evoke appropriate emotional responses. For example, using colour palettes, 
sound design, or visual metaphors to convey the severity of the ecocide. However, it's 
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important to avoid sensationalism and ensure that the emotional impact is aligned with 
the data, for sustainable HCI deployment (DiSalvo, 2010). 

●​ Explainability and Transparency: The system should be transparent about the data 
sources, the methods used to analyse and transform the data, and any limitations or 
uncertainties. This can build trust and help users understand the basis for the 
visualisations. Providing explanations for the system's outputs, such as why a particular 
instance of food fraud is flagged as high-risk, can enhance user understanding and 
engagement (e.g., Lipton, 2018). 

What are the main risks associated with the use of these technologies? 

●​ Bias and misrepresentation: Data visualisation and modality transformation can 
introduce biases, either intentionally or unintentionally. The choice of data to highlight, 
the way it is represented, and the algorithms used to transform it can all influence the 
user's perception. It is crucial to carefully consider potential biases and strive for 
objectivity and fairness in the design and implementation. Independent audits of the 
system and its outputs can help identify and mitigate biases. 

●​ Oversimplification: Complex issues like ecocide can be difficult to represent in a way 
that is both accurate and easy to understand. Oversimplification can lead to 
misinterpretations or a lack of appreciation for the nuances of the problem. It's important 
to strike a balance between clarity and comprehensiveness, providing enough detail to 
inform without overwhelming the user. 

●​ Emotional manipulation: While emotional engagement can be a powerful tool for 
raising awareness, it also carries the risk of manipulation. Visualisations that are overly 
graphic or sensationalised can be distressing or even exploitative. It is important to 
adhere to ethical guidelines for visual communication and avoid using emotionally 
charged imagery solely for shock value. 

●​ Desensitisation: Repeated exposure to visualisations of ecocide could potentially lead 
to desensitisation, where users become less responsive to the issue over time. It's 
important to vary the presentation and provide opportunities for users to take action, 
such as supporting organisations working to combat food fraud or advocating for policy 
changes. 
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S4: Bio-Intelligent Data 

 
 
Outline. The future of the food system involves diverse pathways and complex data-rich value 
chains, with vertically integrated industrial agriculture, lab-grown food, and smallholder farming 
co-existing. Data economies are emerging, with big data seamless integration into the food 
value chain, while data storage has shifted to decentralised blockchain networks to ensure data 
permanence and traceability. 
 
Sensing technology, AI, biosensors, and neurotechnology have led to exponential growth in 
data access and understanding of biological intelligence and the natural world. However, 
challenges persist, like conflicting information and the need to navigate consumer choices. 
Researchers are exploring incorporating the human perspective into the food chain by 
converting biological characteristics into data, addressing persistent issues within the food 
system and decoding communicative information from the biological body. 
 
Technological trends 
This project identified two main technological trends from the application of the DFA method. 

●​ Data Lakes: This trend focuses on the evolution of data management within the food 
supply chain. It highlights the move towards cloud neutrality, open-source data, and 
increased data accessibility for planning and decision-making. Data lakes are seen as 
crucial for organising, optimising, and innovating within food supply chains to enhance 
sustainability. This includes data-driven governance and using digital platforms for better 
food safety and supply chain oversight. 

●​ Affective Computing: This trend revolves around the increasing ability of technology to 
identify and interpret human physiological and psychological states. This is driven by the 
desire for personalised health and experiences, extending to understanding interspecies 
relationships. It involves tools that decode and interpret emotional and mental states to 
enhance the "personalised" experience, particularly in the context of food sourcing, 
preparation, and consumption. 

These trends are further elaborated through some specific domains and scenarios, which are 
summarised below for convenience. 

Domains include “Block-Chained Voice and Food System” (on utilising blockchain to track the 
lifespan of produce, incorporating biological data at each stage, from planting to consumption); 
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“NeuroTechnology - Daily Diaries of the ID” (envisioning the use of neurotechnology to decode 
inner dialogue related to food, storing and interpreting brain signals to increase agency over 
food choices); and “A Psychotropic Intelligence” (on combining psychotropics and 
neurotechnology for personal and environmental health optimisation. These are exemplified in 
the following scenarios: 

●​ Democratised data in diverse decentralised food systems: Open-source and private 
data collaborations, along with AI and real-time sensing, enhance transparency and 
sustainability in decentralised food systems. 

●​ Democratised data in vertically integrated centralised food systems: Open-source 
and private data support the rise of lab-grown and molecular food, raising questions 
about the marginalisation of traditional agriculture. 

●​ Private data and data monopolies in decentralised food systems: Private tech 
companies control data, leading to a fragmented food system and potentially 
exacerbating disparities in food access. 

●​ Private data and data monopolies in vertically integrated centralised food 
systems: Private control of data in centralised, lab-grown food production raises 
concerns about prioritising profit over sustainability and equitable access. 

What are the main technological components that can be inferred from this project? 

Several related technologies were already identified by the artist to address the various 
challenges of the project. These are summarised and expanded below. 

●​ IoT Devices and Sensors are central for monitoring various stages of food production, 
storage, and transportation. Specifically, sensors can measure environmental 
parameters (temperature, humidity, light), soil conditions (moisture, nutrient levels), plant 
health (growth rate, disease detection), and even the ripeness of produce. IoT devices 
can also be used in smart packaging to monitor freshness and quality during transit. As 
per the survey by Atzori et al. (2010), the integration of IoT in agriculture can lead to 
more efficient resource management and crop yields. 

●​ AI and Machine Learning can enable the analysis of large datasets related to dietary 
habits, health outcomes, and food production. Machine learning algorithms can identify 
patterns and correlations, enabling personalised dietary recommendations, predictive 
modelling of crop yields, and optimisation of resource allocation. This aligns with the 
findings of Kamilaris and Prenafeta-Boldú (2018), who highlight the potential of machine 
learning in precision agriculture. There are several examples of AI techniques that can 
be used in this context. For instance, deep learning models can be trained on sensor 
data and satellite imagery to predict crop yields and optimise irrigation schedules (e.g., 
Van Klompenburg et al., 2020). Another example is the use of natural language 
processing (NLP) to extract relevant information from scientific literature and dietary 
guidelines, facilitating the development of personalised nutrition plans. 

●​ Data Governance Frameworks and Privacy Regulations are also central to the 
overall vision proposition. With the increasing use of personal data in the food system, 
robust data governance frameworks and privacy regulations are essential. These 
frameworks should define data ownership, access rights, and usage guidelines, 
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ensuring that individuals' health data is protected. The General Data Protection 
Regulation (GDPR) in the European Union provides a strong foundation for data privacy 
in this context (Voigt & Von dem Bussche, 2017). 

●​ Blockchain Technology can enhance transparency and traceability in the food supply 
chain. By creating an immutable ledger of transactions, it becomes possible to track the 
origin and journey of food products, ensuring authenticity and preventing fraud. This can 
be particularly useful for verifying the organic or fair-trade status of products. Related to 
the vision, Kshetri (2018) discusses the potential of blockchain in strengthening 
cybersecurity and protecting privacy. For example, a blockchain-based system could 
enable consumers to scan a QR code on a product and access detailed information 
about its origin, processing, and transportation, building trust and confidence in the food 
system. 

●​ Smart Kitchen Appliances can provide real-time nutritional analysis and 
recommendations, integrating with other data sources (e.g., dietary preferences, health 
goals) to empower individuals to make healthier food choices. For example, a smart 
refrigerator could track the food items stored inside and suggest recipes based on 
available ingredients and nutritional needs. 

●​ Wearables and Health-Tracking Devices can collect data on individuals' physiological 
responses to food, such as blood glucose levels, heart rate variability, and sleep 
patterns. This data can be used to assess the effectiveness of dietary interventions and 
tailor them to individual needs, leading to more personalised and effective nutrition 
plans. 

●​ Affective Computing: as highlighted in the technological trends, affective computing 
plays a role in understanding the emotional and psychological aspects of food 
consumption. Technologies such as facial expression recognition, voice analysis, and 
physiological sensors can be employed to gauge user responses to food experiences. 
This information can be used to fine-tune food products, dining environments, and even 
personalised food recommendations based on emotional states. The review by Picard 
(1997) provides a comprehensive overview of the principles and applications of affective 
computing. 

●​ Neurotechnology: building on affective computing, neurotechnology offers a more 
direct way to understand the neural correlates of food preferences, cravings, and 
satisfaction. Techniques such as electroencephalography (EEG) and functional 
magnetic resonance imaging (fMRI) can be used to study brain activity during 
food-related tasks. While the application of neurotechnology in everyday food contexts is 
still in its early stages, research by companies such as NeuroFocus has demonstrated 
its potential in understanding consumer behaviour. 

Does this project envision a HM interaction? 

The project, in its current form, primarily focuses on the interconnection, regulation, and 
exploitation of vast and heterogeneous amounts of data. The domains and scenarios described 
do not explicitly anticipate a human-machine interaction component. Most of the envisioned 
technologies operate in the background, collecting, processing, and sharing data without direct 
user input. Therefore, it is challenging to provide guidelines for humanising a component that is 
not yet foreseen. However, considering the potential evolution of the project and the increasing 
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integration of technology into everyday life, it is reasonable to anticipate that future iterations 
may involve more direct interactions between users and the envisioned technologies. For 
example, users might interact with smart kitchen appliances, personalised nutrition dashboards, 
or even conversational virtual assistants capable of providing dietary recommendations. 

If so, how can this technology be made more human? 

No explicit HM interaction was envisioned. If future iterations of the project incorporate direct 
user interaction, principles of human-centred design could be applied to enhance usability and 
user acceptance. For instance, Norman's (2013) principles of interaction design, such as 
affordances, signifiers, and feedback, could guide the development of intuitive interfaces for 
smart kitchen appliances or personalised nutrition platforms. 

What are the main risks associated with the use of these technologies? 

The project responsibly addresses data governance and ethical considerations, acknowledging 
the importance of responsible data acquisition and manipulation. However, several potential 
risks are associated with the use of the envisioned technologies. 

The collection and use of sensitive health data raise significant privacy concerns. Robust 
security measures, including encryption and access controls, are essential to prevent data 
breaches and unauthorised access. Also,  algorithms trained on biased data can perpetuate or 
amplify existing societal biases, potentially leading to discriminatory outcomes in dietary 
recommendations or access to resources. Careful data curation and algorithmic auditing are 
necessary to mitigate this risk. Meanwhile, unequal access to technology and data could 
exacerbate existing health disparities. Efforts should be made to ensure that the benefits of 
these technologies are accessible to all members of society, regardless of socioeconomic 
status or technological literacy. 

The overreliance on technology and the potential psychological impact are also worth 
noting. Excessive reliance on technology for dietary guidance could diminish individuals' ability 
to make informed food choices independently. It is crucial to strike a balance between 
technological assistance and the development of personal nutritional knowledge and skills. 
Instead, the constant monitoring and quantification of food intake and physiological data could 
lead to increased anxiety or obsessive behaviours around food. A mindful approach to data 
presentation and user feedback is needed to avoid negative psychological 
consequences.Overall, as neurotechnology and affective computing become more 
sophisticated, ethical guidelines are also needed to ensure that these technologies are used 
responsibly and do not infringe on individuals' agency or autonomy. 
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S5: One Health Recipes 

 
Outline. The project is set in 2033, and envisions a landscape where governance is undergoing 
a profound transformation. The crisis of confidence in the ability of human authorities to address 
the environmental crisis is being compounded by technological advancements in artificial 
intelligence (AI). In response to this paradigm shift, new alliances are emerging between 
humans and nonhumans, driven by the technological empowerment of both parties. One such 
union is the EcoMind Alliance, a collaboration between scientists, farmers, indigenous people, 
activists, and technologists, led by the Artificial Intelligence known as GAIA. Leveraging the 
capabilities of AI and satellite and sensor networks, the EcoMind Alliance monitors the planet 
on an unprecedented scale. It collects and interprets environmental data in partnership with 
local communities, using AI support systems like GAIA-AI. Based on these insights, the 
EcoMind Alliance devises policies, manages regenerative farms, and implements the rights of 
nature in jurisdiction, acknowledging the Earth as a community of subjects. Its guiding principle, 
"One Health," recognizes the interdependence of all earthly beings and aims to foster a 
harmonious coexistence between human economy and the earth's ecology. 
 
Through the EcoMind Alliance, society is exploring a radical reimagining of governance models. 
It is a bold experiment in shared governance between humans and nonhumans, seeking to 
create a sustainable and equitable future for all inhabitants of the Earth. 
 
Technological trends 
The artist already identified the following trends as technology enablers. 
 
Earth observation is the gathering of information about the physical, chemical, and biological 
systems of the planet Earth. It can be performed via remote-sensing technologies (satellites) 
or through direct-contact sensors. The Group on Earth Observations (GEO), which has over 
100 member countries and over 100 participating organisations coordinates international efforts 
to build a Global Earth Observation System of Systems (GEOSS). 
 
Already today, AI is used as decision support in cancer treatments. "By crossing data and 
deploying data analytics, it could be used to identify patterns in bureaucratic flux and improve 
decision-making processes", once the technology advances. In the 70s, the Chilean 
government implemented a technology-driven decision support system to synchronise and 
increase the efficiency of their farming produce. 
 
What are the main technological components that can be inferred from this project? 

This project envisions a complex interplay of technologies to achieve its goals. The core 
technological components can be broken down and expanded upon as follows. 
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●​ Earth Observation and Remote Sensing: This involves the use of satellites and other 
remote sensing technologies to gather data about the Earth's physical, chemical, and 
biological systems. As outlined in the project description, the Group on Earth 
Observations (GEO) is already coordinating international efforts in this area. The Global 
Earth Observation System of Systems (GEOSS) aims to provide a unified platform for 
accessing and sharing Earth observation data (GEO, n.d.). In the context of this project, 
remote sensing can be used to monitor deforestation, land degradation, water quality, 
and other environmental factors that impact food production. Computer vision 
techniques will be critical for processing satellite imagery and extracting meaningful 
information, such as crop health, soil moisture levels, and the presence of pests or 
diseases. 

●​ In-Situ Sensors and the Internet of Things (IoT): Alongside remote sensing, the 
project envisions the deployment of ground-based sensors to collect data at a more 
granular level. These sensors, connected through an IoT infrastructure, can measure 
soil conditions (pH, nutrient levels, moisture), microclimate (temperature, humidity, wind 
speed), and plant health (growth rate, stress indicators). This data complements the 
broader view provided by remote sensing, offering a more detailed understanding of 
local ecosystems. The use of IoT in agriculture is already gaining traction, with 
numerous studies demonstrating its potential for improving resource management and 
crop yields (e.g., Elijah et al., 2018). 

●​ Data Integration, Big Data, and Data Fusion: A cornerstone of the project is the ability 
to integrate and analyse vast amounts of data from diverse sources. This requires 
robust data management systems, capable of handling the volume, velocity, and variety 
of big data generated by sensors, satellites, and other sources. Data fusion techniques 
will be needed to combine data from different modalities and resolutions, creating a 
unified and coherent picture of the environment. This process might involve dealing with 
conflicting or incomplete data, requiring sophisticated data reconciliation and validation 
methods (e.g. Castanedo, 2013). For example, data from a soil moisture sensor might 
be combined with satellite-derived precipitation data and weather forecasts to predict 
irrigation needs. 

●​ Data Analysis: This is where the GAIA-AI system comes into play. Machine learning 
algorithms can be used to process the integrated data, identify patterns, and contribute 
novel insights. This includes developing predictive models for crop yields, disease 
outbreaks, and the impact of climate change on agriculture. As mentioned, AI is already 
being used in healthcare for decision support, and this project envisions a similar 
application in the context of food production and environmental management. Machine 
learning can be used to optimise farming practices, such as fertilisation, irrigation, and 
pest control, based on real-time data and predictive models (e.g., Benos et al., 2021). 

●​ Robotics (Service Robots for Nature): This is a more speculative aspect of the 
project, but it raises questions about the role of robotics in environmental stewardship. 
The idea of "Robot Guardians of Nature" suggests a shift from anthropocentric to 
ecocentric robotics. These robots might be tasked with monitoring ecosystems, 
collecting data, removing pollutants, or even intervening to protect endangered species. 
To our best, this area is relatively unexplored in HRI. 

●​ Wearables and Human-Environment Connection: The "Sensing the Planet / Eating 
the Extinct" domain explores the potential of wearables to create a more direct 
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connection between humans and the environment. This could involve sensors that 
measure physiological responses to environmental changes or devices that provide 
haptic feedback based on ecosystem health. While still largely conceptual, this area 
aligns with research on embodied cognition and the role of sensory experience in 
shaping our understanding of the world (e.g., see Wilson, 2002). It can include sensor 
technologies to create a connection between the human body and the planet. For 
instance, wearables could be used to measure physiological responses to changes in 
the environment, or provide haptic feedback related to ecosystem health. 

Does this project envision a HM interaction? 

Similar to "Bio-Intelligent Data", this project, in its current form, does not explicitly envision a 
direct human-machine interaction component. The focus is on creating an intelligent system 
(GAIA-AI) that operates autonomously, making decisions based on data analysis. However, 
there are potential areas where HMI could become relevant: 

●​ Data Visualisation and Interpretation: While GAIA-AI might make decisions 
autonomously, humans (farmers, policymakers, scientists) will likely need to understand 
the data and the rationale behind those decisions. This could involve interactive 
dashboards and visualisations that allow users to explore the data, query the system, 
and understand its reasoning. This is confirmed by element 3 described in the proposal, 
where GAIA AI is said to generate plans, advice, and experiments by integrating data 
with knowledge from local farmers, communities, and researchers. 

●​ Robotics: If "Robot Guardians of Nature" are deployed, there might be situations where 
humans need to interact with them, either to provide instructions, override their actions, 
or collaborate on specific tasks. This would require the development of appropriate 
communication protocols and interaction modalities. 

●​ Wearables: The wearable component inherently involves human interaction, as the 
devices are designed to be worn and to provide feedback to the user. The nature of this 
interaction will depend on the specific design and purpose of the wearables. 

In addition, the robotics scenario presents unique challenges (outlined below) while not 
envisaging a particular human-machine interaction. In fact, technology is expected to serve and 
guard nature instead of humans. As the former is non-human, it is difficult to anticipate how 
technology should be humanised. Finally, the wearable application shares substantial 
similarities and overlaps with P2: Soil Skinships: soil fertility and our reproductive futures – 
given the specific goal of connecting humans and soil through wearable technology. 
 
If so, how can this technology be made more human? 

While direct HMI is not a primary focus, the principles of human-centred design can still be 
applied to enhance the overall system: 

●​ Transparency and Explainability: Even if GAIA-AI operates autonomously, it is crucial 
that its decision-making process is transparent and explainable to humans. This is 
particularly important when the system's actions have significant environmental or 
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societal impact. Techniques from explainable AI (XAI) can be used to provide insights 
into the system's reasoning (e.g., see Adadi & Berrada, 2018). 

●​ User Control and Agency: While the system is designed to be autonomous, humans 
should retain a sense of control and agency. This could involve the ability to set 
high-level goals, adjust system parameters, or even override the system's decisions in 
certain situations. 

●​ Ethical Considerations: The design of the system should be guided by ethical 
principles, ensuring that it aligns with human values and societal norms. This includes 
considerations of fairness, accountability, and responsibility. 

What are the main risks associated with the use of these technologies? 

A primary concern is the potential for overreliance on GAIA-AI, potentially leading to a gradual 
de-skilling of human farmers and an erosion of valuable traditional ecological knowledge. 
This dependence could be further complicated by the introduction of "Robot Guardians of 
Nature," whose actions, while intended to serve the environment, might directly conflict with 
human interests, leading to social friction and resistance. Justifying these robotic actions to the 
public, particularly when they result in negative consequences for certain individuals or groups, 
poses a significant communication and ethical challenge.​
Furthermore, the autonomous nature of these robots could raise concerns regarding error and 
unintended consequences, necessitating robust mechanisms for human oversight and 
intervention. The vast amount of data collected and processed by the EcoMind Alliance brings 
with it inherent risks to data security and privacy, demanding adequate safeguards to protect 
sensitive environmental and personal information. Similarly to other projects and scenarios, the 
deployment of such advanced technology raises concerns about equitable access and 
distribution of benefits, potentially exacerbating existing inequalities and concentrating power 
in the hands of a few, while disproportionately burdening marginalised communities with 
negative consequences. 

S6: Holobiont Futures 

 
Outline.Holobiont Gardens envisions a future where urban environments merge with human 
health and microbiomes. Set in 2035, it explores a thriving microbiome wellness industry amidst 
a growing global microbial justice movement. Public access to beneficial microorganisms is 
recognized as a human health right, with accessible microbiome testing and community-based 
science shaping care plans. Post-industrial urban sites transform into "Holobiont Gardens," 
guided by Traditional Ecological Knowledge (TEK) and probiotic architecture, serving as hubs 
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for nurturing macro and microbiodiversity, growing medicinal foods, and mapping holobiont 
health. 
 
Through the elements contributed to this scenario, the authors envision a world where 
microbiome tracking and microbial justice are central to system design, acknowledging that all 
entities are holobionts. TEK and technology merge to create equitable resource distribution and 
comprehensive care systems. Economic systems mimic mycelial networks, fostering 
collaboration and resource-sharing, mimicking nature's efficiency. Public spaces, ceremonies, 
and social practices around food as medicine are nurtured, emphasising embodied and 
emotional experiences as vital for planetary survival and thriving. 
 
Technological trends 
The authors identified technologies designed to map or quantify the user's microbiome in 
some form, such as home-testing kits, metabolism monitoring apps or services, and body 
monitoring products. These products and services aim to provide users with a more intimate, 
albeit quantified, knowledge of their bodies. Notably, there has been a rise in services that 
enable this monitoring to be conducted domestically. 

What are the main technological components that can be inferred from this project? 

This project envisions a convergence of several technologies, some explicitly mentioned and 
others inferred, to create a future centered around microbiome health and environmental 
justice. The main components are outlined as follows. 

●​ Microbiome Tracking Technologies are a central component here, encompassing a 
range of tools for analysing and understanding the human microbiome. These include: 
home-testing kits allowing individuals to collect samples (e.g., stool, saliva) at home 
and send them for analysis, providing information about the composition and diversity of 
their microbiome; metabolism monitoring apps and services: as digital tools helping 
users track dietary intake, physical activity, and other lifestyle factors that influence the 
microbiome (also with the potential of providing personalised recommendations based 
on the user's data and goals); and body monitoring products (wearables), such as 
smartwatches, fitness trackers, and other wearable devices that can collect 
physiological data (e.g., heart rate, sleep patterns, body temperature) that can be 
correlated with microbiome data to provide a more holistic view of health. 

●​ Hologenomics Data Portals provide platforms that serve as centralised repositories for 
storing, managing, analyzing, and sharing hologenomic data. This includes data from 
the host genome, the microbiome, and environmental factors. These portals facilitate 
collaboration among researchers, clinicians, and potentially even citizen scientists. 
Interoperability and data standardisation efforts are expected to be central for the 
success of these portals (e.g., see Korpela et al., 2020). 

●​ Machine learning algorithms are already used to analyse the complex and 
high-dimensional data generated from microbiome and hologenomic studies. These can 
identify patterns, correlations, and potential biomarkers that would be difficult to detect 
through traditional statistical methods. For example, these algorithms can be used to 
predict disease risk based on microbiome composition or to develop personalised 
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dietary interventions (e.g., see Zeevi et al., 2015). 
●​ Blockchain Technology here could provide a secure and immutable ledger system for 

managing hologenomic data. This can help ensure data integrity, prevent tampering, 
and track data provenance. It can also facilitate secure data sharing among researchers 
and institutions while protecting individual privacy (e.g., see Angraal et al., 2017). 

●​ Robotics: the project suggests a role for robotics in automating tasks related to 
microbiome research and potentially in interacting with humans to promote microbiome 
health. This could take the form of laboratory automation or social robots. In the 
former, robots can automate repetitive tasks in the lab, such as sample processing, DNA 
extraction, and sequencing, increasing efficiency and reducing the risk of human error. 
Instead, social robots could be used to educate the public about the microbiome, 
promote healthy lifestyle choices, and even guide individuals through 
microbiome-related practices, such as preparing fermented foods or participating in 
microbiome-friendly activities. This can take advantage of existing research in social 
robotics, where robots have been successfully used as educational tools and to promote 
well-being (e.g., see Luperto et al, 2023, Pu et al., 2019). 

●​ Traditional Ecological Knowledge (TEK) Integration: while not a technology in itself, 
the project emphasises the importance of integrating TEK with technological 
advancements. This could involve developing databases or platforms that document and 
share TEK related to food, medicine, and environmental stewardship. It could also 
involve designing technologies that are informed by TEK principles, such as biomimicry 
or sustainable resource management practices. 

Does this project envision a HM interaction? 

While the scenario does not explicitly focus on human-machine interaction, several of the 
envisioned technologies imply a degree of interaction. 

●​ Microbiome Tracking Technologies: Users interact with home-testing kits, metabolism 
monitoring apps, and wearables to collect and input data about their bodies and 
lifestyles. They also receive feedback and recommendations from these technologies, 
creating a feedback loop. 

●​ Hologenomics Data Portals: Researchers and clinicians interact with these portals to 
access, analyse, and share data. The design of the user interface and the data 
visualization tools significantly impact the usability and effectiveness of the platforms. 

●​ Social Robots: If social robots are used to educate and engage the public, this would 
involve direct and potentially complex social interactions between humans and robots. 
The design of the robots' appearance, behavior, and communication style would be 
crucial for creating engaging and effective interactions. More guidelines related to this 
dimension are given below, as well as in Sections 2 and 3.  

●​ TEK Integration Platforms: If platforms are developed to share TEK, users will interact 
with them to learn, contribute, and potentially collaborate with TEK holders. 

If so, how can this technology be made more human? 

Given the implied interactions, we identified the following solutions to make these technologies 
more human-centered: 
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●​ User-Friendly Interfaces: Home-testing kits, apps, wearables, and data portals should 
be designed with intuitive and easy-to-use interfaces. This includes clear instructions, 
simple navigation, and accessible language. This is a foundational aspect of HCI. 

●​ Personalised Feedback: The feedback provided by microbiome tracking technologies 
and AI algorithms should be tailored to the individual user's needs, goals, and level of 
understanding. Personalisation is a key aspect to improve the effectiveness of the 
interaction and the adoption of a technology. 

●​ Data Visualisation: Complex microbiome and hologenomic data should be presented in 
a clear, concise, and visually appealing manner. Effective data visualization can help 
users understand their data and make informed decisions (e.g., see Borkin et al., 2013). 

●​ Social Robot Design: If social robots are used, their design should be guided by 
principles of social robotics, ensuring that they are perceived as trustworthy, engaging, 
and socially appropriate. Their non-verbal cues (e.g. gaze, proxemics), and verbal 
communication need to be carefully designed to foster positive interactions (e.g. see 
Leite et al., 2013). The robots' physical appearance should be fitting for the agricultural 
context and designed to be non-intimidating and approachable, potentially resembling 
friendly animals, plants, or even abstract representations of natural elements. Effective 
communication is paramount, requiring robust natural language processing (NLP) 
capabilities to understand and respond to human speech, alongside the ability to 
express emotions through a range of modalities, including facial expressions, body 
language, and dynamic changes in color or light patterns. Beyond basic communication, 
robots should demonstrate social intelligence, accurately interpreting social cues, 
adapting their behavior based on the context, and building rapport with users through 
recognizing and responding to human emotions. To further enhance the human-robot 
bond, robots could be designed to express empathy and cultivate emotional 
connections, personalising their interactions based on user profiles, past interactions, 
and individual preferences. Crucially, transparency and explainability are vital, with 
robots clearly articulating their capabilities, limitations, and the reasoning behind their 
actions in a manner easily understood by human users (Tapus, 2007). 

●​ Cultural Sensitivity: The design of TEK integration platforms should be culturally 
sensitive and respectful of Indigenous knowledge systems. This might involve 
co-designing these platforms with TEK holders and ensuring that they have control over 
how their knowledge is shared and used. 

●​ Transparency and Explainability: machine learning algorithms used to analyse 
microbiome data should be transparent and explainable, allowing users to understand 
how recommendations are generated and build trust in the technology. 

●​ Embodied Interaction: Considering the project's emphasis on embodied experiences, 
technologies could be designed to encourage physical engagement with the 
microbiome, such as through gardening, food preparation, or other activities that 
promote a healthy microbiome. 

What are the main risks associated with the use of these technologies? 

The collection, storage, and use of sensitive microbiome and genomic data raise significant 
privacy concerns. Robust security measures, including encryption, access controls, and 
anonymisation techniques, are essential to protect this data from unauthorised access and 
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misuse. Clear guidelines are needed regarding data ownership and control, ensuring that 
individuals have agency over their own data and can decide how it is used and shared. 
Furthermore, the ethical use of AI in this context requires careful consideration to prevent bias 
and discrimination. AI algorithms trained on biased data could perpetuate or amplify existing 
societal inequalities, for example, by providing different recommendations or opportunities 
based on an individual's microbiome profile. Regular auditing of algorithms and a commitment 
to fairness and transparency are crucial to mitigate this risk. 

The increasing reliance on technology for understanding and managing our health could lead to 
an overemphasis on quantification and a reductionist view of well-being. While data can be 
valuable, it represents only a partial picture of human health. Qualitative factors, such as 
emotional well-being, social connections, and a sense of purpose, are equally important but 
harder to measure. An excessive focus on data could also diminish individuals' ability to make 
informed decisions about their own health, leading to a dependence on technology and a 
deskilling of personal health literacy. Moreover, access to microbiome technologies and their 
benefits might not be evenly distributed, potentially exacerbating existing health disparities. 
Efforts should be made to ensure equitable access for all, regardless of socioeconomic status, 
geographic location, or technological literacy. 

The project's focus on environmental microbial justice is commendable, but it is crucial to 
ensure that the pursuit of this goal does not inadvertently harm the environment or specific 
communities. The introduction of new technologies and practices should be carefully evaluated 
for their potential ecological impact, and steps should be taken to minimise any negative 
consequences. The growing microbiome wellness industry also raises concerns about the 
potential for commercialisation and commodification of the microbiome. This could lead to the 
exploitation of individuals and the environment, with companies prioritising profit over public 
health and ecological sustainability. The use of social robots, while promising, also carries risks. 
Technological overreliance on robots for social interaction could potentially lead to social 
isolation or a decline in human social skills. It is important to ensure that robots are used to 
enhance, rather than replace, human interaction. 

S7: What the World Eats  

 
 
Outline. This project aims to envision a transformative future paradigm at the intersection of 
technology, agriculture, and the environment. Rooted in gratitude for the Earth's provisions and 
committed to planetary health, the project delves into ancestral dimensions of technology and 
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agrologistics, advocating for intergenerational lifespans, uses, and agencies. It explores 
questions such as whether technology can become compostable for the Earth and serve as an 
intergenerational nurturing force for non-humans. The project investigates elements like 
mycelium-based agriculture, animal architectures, environmental sensing apparatuses, and 
companion plantings, intertwining technology with the symbiotic workings of the Earth. It 
challenges conventional perspectives by emphasising gratitude for the world's gifts and 
recognising the need to care for more-than-human lives and the planet’s well-being. 
 
A summary of the main elements of the scenario, which is necessary to identify and infer its 
technological components, is given below. These are elaborated from their proposal. 

●​ Biocomputing and sensing investigates the technology’s potential to create life forms 
modelled after plants, fungi, and bacteria. These organisms could possess 
intelligence, sensory capabilities, and the ability to transmit electronic information. This 
unconventional computing paradigm challenges traditional rock-based hardware and 
raises questions about senseability and how their sensory abilities could influence our 
understanding of non-human entities in food cultures. 

●​ Organic materials, such as fungi's mycelium networks, offer versatile potential across 
various sectors. Mycelium networks function as biodegradable binders that digest 
organic components like agricultural waste, creating solid structures applicable in 
architecture, textiles, interior design, soft robotics, and more. These fungal 
structures are said to have the unique ability to grow, build, and repair themselves and 
could become computable sensors. 

●​ Biodiversity and Traditional Ecological Knowledges (TEK) shares parallels with P6: 
Holobiont Futures and is inspired by the role indigenous communities play as 
environmental custodians, preserving 80% of the remaining biodiversity on Earth. TEK 
goes beyond modern technology by utilising soft, symbiotic living systems to harness 
environmental energy. It is rooted in spiritual and social fabric, transmitting ecocultural 
wisdom across generations. It encompasses concepts like kinship with nature, 
reciprocity, and gratitude toward ecosystems and their inhabitants. 

●​ Variability and invasive friendships: as the planet changes and global warming alters 
landscapes, ecosystems and societies face heightened pressures. Food can help 
societies adapt to variability and create affirmative cultures. By embracing "invasive" 
species through culinary adaptation, this can promote biodiversity, resilience, and 
cross-cultural experimentation. 

●​ Cultural thinking suggests that everything is interconnected. Birds, cows, and soil have 
artistic and environmental potential. All objects, technologies, places, beings, and 
environments are alive, expressive, and connected through time. Meals align with 
nature, singing resonates in the landscape, and pigeon towers mimic the wind. 

●​ Non-Human architectures can implement agricultural landscapes resembling 
multispecies cities, with small towns for swallows and pigeons, villages of beehives, and 
cities of caves for compost-making crustaceans. The fields accommodate a diversity of 
species, some providing space for one another, like beans using corn as a climbing rod 
in the Mexican milpa. Self-repairing structures built with senseable mycelium 
architectures offer shade for grazing animals. 
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What are the main technological components that can be inferred from this project? 

This scenario envisions a future where technology and nature are deeply intertwined, with a 
focus on sustainability,biodiversity, and a renewed respect for ancestral knowledge. Several key 
technological components can be inferred from the project description: 

●​ Biorobotics and soft robotics: This is arguably the most central technological 
component, directly linked to the "Bio Computing and Sensing" element. The scenario 
imagines creating "life forms modelled after plants, fungi, and bacteria" with 
"intelligence, sensory capabilities, and the ability to transmit electronic information." Soft 
robotics could leverage materials like mycelium (as mentioned in "Organic Materials") 
to create robots that can mimic the growth, movement, and adaptability of natural 
organisms. This aligns with the growing field of soft robotics, which draws inspiration 
from biological systems to create more flexible and adaptable robots (Rus & Tolley, 
2015). Another potential direction is biorobotics, which relies on Integrating biological 
components with robotic systems. This could involve using living cells or tissues to 
create actuators, sensors, or even processing units. For example, research is exploring 
the use of engineered microorganisms to create living sensors for environmental 
monitoring or to power micro-robots (Shivalkar et al., 2023). Finally, to design and test 
these biorobotic systems, advanced computational models will be needed. These 
models will need to simulate the complex behaviour of biological materials and their 
interactions with the environment (Lipson, 2014). 

●​ Mixed Reality (MR) for interaction and education: While not explicitly stated, MR 
technology is strongly implied as a means to experience and understand the concepts 
presented in the scenario. For example, MR could visualise and Interact with 
Bio-Robotic Systems, or create immersive learning environments. Users could 
indeed interact with virtual representations of the plant, fungi, and bacteria-inspired life 
forms. They could observe their behaviour, manipulate their environment, and even 
"experience" the world through their simulated senses. Alternatively, MR can recreate 
ecosystems that showcase biodiversity and traditional ecological knowledge (TEK). 
Users could virtually visit indigenous communities, learn about their sustainable 
practices, and understand the interconnectedness of nature in a highly engaging way. 
For example, educational MR applications in cultural heritage are becoming more 
common, showcasing great usability (Bekele et al., 2018) 

●​ Biofabrication and material science: The "Organic Materials" element highlights the 
use of mycelium networks for various applications. This implies the use of biofabrication 
techniques, which involve growing materials from living cells, such as mycelium, into 
desired shapes and structures. This is recognised as an active area of research with 
potential applications in sustainable architecture, product design, and even food 
production (Karana et al., 2018).  Understanding the properties of mycelium-based 
materials, such as their strength, flexibility, and biodegradability, also require advanced 
material characterisation techniques. 

●​ Sensor networks and environmental monitoring: The concepts of "Environmental 
Sensing Apparatuses" and understanding the sensory abilities of bio-robotic organisms 
suggest the need for advanced sensor technologies, including, for example, 
bio-sensors that mimic the sensory capabilities of natural organisms, as well as 
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traditional sensors for monitoring environmental parameters like temperature,humidity, 
and soil composition; but also data analysis and interpretation technologies, using 
computational models to analyse and interpret this data to understand ecosystem health 
and the impact of human activities. 

Does this project envision a HM interaction? 

This scenario does not explicitly envision a highly structured or task-oriented human-machine 
interaction in the traditional sense. However, implicit forms of human-machine interaction are 
present and crucial to the scenario's vision. 

●​ Experiential Interaction through Mixed Reality: MR provides a powerful medium for 
users to interact with the concepts of the scenario. This interaction is less about direct 
control and more about observation, exploration, and gaining a deeper understanding of 
the interconnectedness of technology and nature. 

●​ Interaction with biorobotic systems: While the scenario does not detail specific 
interactions, we can expect that humans would interact with the bio-robotic life forms. 
This could involve: monitoring and guiding growth, to guide the development of 
mycelium structures or influencing the behaviour of bio-robotic organisms through 
environmental cues; or collaborative activities, where humans and bio-robotic systems 
work together in agricultural or environmental restoration tasks. 

If so, how can this technology be made more human? 

The key to humanising the interaction in this scenario lies in fostering a sense of connection, 
respect, and understanding between humans and the envisioned technologies. This can be 
achieved by considering the following directions.  

●​ Embodied Interaction in MR: 
○​ Natural Interaction modalities: MR interfaces should leverage natural human 

interaction modalities like gesture, gaze, and voice control to make the 
experience intuitive and immersive (Billinghurst et al., 2015). 

○​ Embodied cognition: Design interactions that consider how our bodies and 
physical experiences shape our understanding of the world. For example, users 
could physically move through a virtual ecosystem or use their hands to interact 
with virtual plants and organisms. 

●​ Bio-Inspired design principles: 
○​ Biomimicry: Design the behaviour and appearance of bio-robotic systems to be 

inspired by natural organisms. This can make them appear less alien and more 
relatable to humans (Lepora et al., 2013). 

○​ Transparency and explainability: While the inner workings of complex 
bio-robotic systems might be difficult to fully understand, providing users with 
some level of transparency about their behaviour and decision-making 
processes can build trust. 

●​ Focus on education and reflection: 
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○​ Narrative and storytelling: Use MR experiences to tell compelling stories about 
the interconnectedness of nature and technology, highlighting the importance of 
sustainability and traditional ecological knowledge. 

○​ Promoting reflection: Design interactions that encourage users to reflect on 
their own relationship with nature and technology and consider the ethical 
implications of the scenario's vision. 

What are the main risks associated with the use of these technologies? 

The implementation of the envisioned technologies carry several inherent risks, primarily 
stemming from the introduction of novel bio-robotic and bio-fabricated entities into natural 
environments. A key concern is the potential for unintended ecological consequences, as 
introducing artificial life forms, even those designed to be beneficial, could disrupt existing 
ecosystems, impact biodiversity, and create unforeseen imbalances.  Controlling and 
containing these bio-robotic systems poses another substantial challenge, as ensuring they 
remain within designated areas and do not proliferate uncontrollably may prove difficult. The 
very act of creating artificial life raises ethical concerns about "playing God" and the potential 
for unforeseen ramifications, particularly regarding the commodification of natural processes 
through biofabrication and related technologies. Furthermore, an over-reliance on these 
advanced technological solutions could lead to a loss of traditional ecological knowledge 
and create a dependence that makes society vulnerable to system failures or disruptions. 
Finally, unequal access to these potentially transformative technologies could exacerbate 
existing social and economic inequalities. 

S8: Patterns that persist 

 
 
Outline. In a world where biodiversity becomes the benchmark for healthy human food 
systems, a journalist named Max embarks on a journey through Europe in 2033 to explore the 
impact of the radical legislation, "Maximising Biodiversity," approved by the European 
Commission in 2028. As Max interacts with various stakeholders, from traditional farmers 
struggling to adapt to the new requirements to regenerative farmers and food producers 
working to heal agricultural landscapes, he discovers that technology plays a crucial role in 
monitoring and optimising biodiversity. In particular, Max encounters a technician in Portugal 
who designs monitoring tech for food forests, such as AI-enabled audio ecology devices and an 
online platform that connects producers with eaters. This technology aids in tracking the health 
and biodiversity of food forests, thus promoting sustainable agricultural practices and 
empowering communities to become active participants in the biodiversity movement. 
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In this scenario 4 persona and 2 events, the element that envisages a technological presence is 
the  Inês persona. Inês is a drone technician and pioneer farmer who inherited a neglected plot 
of land and decided to use technology to transform it. Combining traditional wisdom, modern 
technology, and community involvement, she aimed to boost the biodiversity of our local food 
system. Using drones, she took multi-spectral images to assess the landscape's health and 
developed an algorithm to assist with planting and harvesting in our food forest. Today, the 
land thrives with 200 species adapted to the changing climate. She has built bespoke 
technologies to measure ecosystem services, including sensors for soil, water, and carbon 
storage. Additionally, an AI-enabled audio ecology monitoring system tracks biodiversity. 
The data collected helps me qualify for financial incentives, allowing me to hire local workers for 
delicate harvesting tasks that robots cannot perform. Through this innovative approach, she is 
creating a sustainable and thriving food forest that benefits both the environment and the 
community. 

 
Among the trends, the authors of the scenario acknowledge current advancements in 
technology bringing new instruments, tools, and epistemologies that enable more accurate 
measurements. These include AI models for bird sound recognition and remote sensing and 
monitoring tools. Optimization and efficiency technologies, including robots, algorithms, AI, 
and labs, are being utilized to enhance food production processes. These can manifest as 
alternative proteins, lab-grown meat, vertical farms, and automated growing or milking 
operations, potentially displacing the role of human farmers. 
 
What are the main technological components that can be inferred from this project? 

The main technological components of this scenario are outlined below. 

●​ Audio Monitoring Systems can enable the assessment of biodiversity. The use of 
AI-enabled audio technologies for ecological monitoring is well-documented. For 
example, Stowell et al. (2019) provide a comprehensive overview of automatic acoustic 
detection of birds through machine learning, highlighting various feature extraction 
techniques and classification algorithms suitable for this task. The system could 
leverage deep learning models, such as Convolutional Neural Networks (CNNs), trained 
on extensive datasets of bird vocalisations. These models can achieve high accuracy in 
identifying different species even in noisy environments. Similar techniques can be 
applied to insect sounds, which are also important indicators of ecosystem health 
(Riede, 1998). 

●​ Online Platforms for Connecting Producers and Consumers: These platforms 
facilitate direct interaction and knowledge exchange, fostering a sense of community 
and transparency. Effective visualisation of biodiversity data is crucial for communicating 
complex information to a non-expert audience. Techniques such as interactive maps, 
charts, and infographics can be employed to present data on species richness, 
population trends, and the impact of farming practices (Pousman et al., 2007). 
Furthermore, integrating e-commerce functionality allows consumers to directly support 
biodiversity-friendly farming. Blockchain technology can enhance traceability, allowing 
consumers to track the origin and journey of their food, ensuring transparency and 
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building trust (Kshetri, 2018). 
●​ Drones for Multi-spectral Imaging and Precision Agriculture are revolutionising 

agriculture by providing detailed aerial insights. As mentioned in the scenario, 
multi-spectral cameras on drones can capture data beyond the visible spectrum, 
providing information about plant health, soil conditions, and water stress (Mulla, 2013, 
Hino et al, 2018). This data can be used to create detailed vegetation indices, such as 
the Normalised Difference Vegetation Index (NDVI), which are strong indicators of plant 
health. Also, the algorithms developed by Inês could guide autonomous drones or other 
robotic systems for precision planting and harvesting. This minimises soil disturbance, 
optimises resource use, and reduces the need for manual labour in certain tasks (Zhang 
& Kovacs, 2012). For example,this could inform and guide a swarm of agricultural 
robots, which are used to minimise the impact on the environment while improving the 
efficiency of operation (e.g. harvesting, seeding) and reducing the need for large fields 
(Shamshiri et al., 2018). 

●​ Sensors for Soil, Water, and Carbon Storage provide real-time data on crucial 
environmental parameters. Soil Sensors can measure parameters like moisture, nutrient 
levels (NPK), pH, and temperature. This data can inform irrigation and fertilisation 
strategies, optimising resource use and minimising environmental impact (Padhiary et 
al., 2024). Water quality sensors can monitor parameters like dissolved oxygen, turbidity, 
and the presence of pollutants, providing insights into the health of water bodies within 
the food forest (Bhardwaj et al., 2022). Similarly, accurate measurement of carbon 
sequestration in soil and biomass is essential for quantifying the environmental benefits 
of food forests. Techniques like eddy covariance and soil carbon sampling can be 
employed (Arias-Navarro et al., 2021). 

Does this project envision a HM interaction? 

While the scenario doesn't explicitly detail direct user interfaces for these technologies, it 
implies several points of human-machine interaction: 

●​ Farmers (like Inês) interacting with: 
○​ Drone control interfaces for flight planning and data acquisition. 
○​ Data analysis dashboards to interpret sensor data and multi-spectral imagery. 
○​ Interfaces for programming and managing the audio monitoring system. 
○​ The online platform to manage their profile, interact with consumers, and access 

market information. 
●​ Consumers interacting with: 

○​ The online platform to learn about biodiversity, browse products, place orders, 
and potentially track the journey of their food. 

Therefore, there is an implicit HM interaction component that, while not the primary focus, is 
essential for the successful implementation of these technologies. 

If so, how can this technology be made more human? 
Although the scenario primarily focuses on environmental monitoring, we can enhance the 
interaction component by considering the following guidelines. 

 ​  



D4.5 - UX INTERACTION GUIDELINES 

 
39 

●​ User-Centred Design for Farmers: 
○​ Intuitive Interfaces: Drone control interfaces and data dashboards should be 

designed with simplicity and ease of use in mind, considering the potential 
varying levels of technical expertise among farmers (Rasmussen, 1983). 

○​ Personalisation: The systems should allow farmers to tailor the information 
displayed and the level of automation to their specific needs and preferences. 

○​ Feedback and Control: Provide clear feedback on system status, data 
interpretation, and the results of actions taken (e.g., changes in planting 
strategies based on sensor data). 

●​ Engaging and Informative Platform for Consumers: 
○​ Storytelling and Transparency: The platform should go beyond simple 

e-commerce and use storytelling to connect consumers with the farmers and the 
ecological benefits of their practices. Visualisations, farmer profiles, and 
narratives about the food forest can create a compelling experience. 

○​ Education and Gamification: Incorporate educational content about 
biodiversity and sustainable agriculture. Gamification elements, such as badges, 
rewards, or challenges, can further engage consumers and encourage them to 
make informed choices (Deterding et al., 2011). 

What are the main risks associated with the use of these technologies? 

The extensive use of technology in this scenario presents risks related to data privacy, 
algorithmic bias, and technological dependence. Firstly, the vast collection of sensitive 
environmental and agricultural data, including farm locations and operational details, raises 
significant privacy concerns. Unauthorised access or misuse of this data could allow malicious 
actors to track farmers, compromise operations, or commit sabotage. Secondly, reliance on AI 
algorithms for critical tasks like species identification and ecosystem assessment introduces the 
risk of algorithmic bias. Biased or incomplete training data could lead to inaccurate 
assessments and flawed decision-support tools, potentially harming biodiversity and impacting 
farmers unfairly. Finally, increasing dependence on technology creates a vulnerability to 
technological failures. System malfunctions, outages, or obsolescence could severely disrupt 
farm operations, leading to economic losses and jeopardizing food security. This dependence 
highlights the need for backup systems, contingency plans, and ongoing training. 

S9: From Farm to Table in a Hyperconnected World 
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Outline. The authors envision a near-future scenario where a pioneering agroforestry initiative 
emerges on the outskirts of rapidly expanding urban areas. Led by B-Corp, a forward-thinking 
organisation, this initiative challenges the prevailing ethos of relentless growth and financial 
gains. Inspired by Kate Raworth's "Doughnut Economics," B-Corp's philosophy integrates 
ecology and economy, managing resources meticulously and prioritising societal and planetary 
boundaries. New global and local policies support this transformative approach, including 
Extended Producer Responsibility (EPR), non-edible plastic taxes, and a nascent United 
Nations Global Treaty. These policies address issues like artificially priced plastic and carbon 
credits, emphasising stakeholder liability and shared responsibility for environmental 
preservation. 
 
Amidst these changes, communities respond with a "Manifesto for Un-Stuffing" aiming to 
reclaim lives from consumerism and challenging digital giants like Amazon and Alibaba. B-Corp 
intensifies cybersecurity measures to counter automated systems and AI designed for crop and 
ecosystem management, as these technologies disrupt the delicate balance of the ecosystem. 
The "Manifesto for Un-Stuffing" and disruptive AI forces underscore the complexities of 
navigating a future where ecological balance, responsible business practices, and societal 
values intersect. 
 
In the scenario, BioHarvest Haven emerges as a groundbreaking blend of technology and 
sustainable agriculture. These urban hubs seamlessly merge with cityscapes, dismantling 
barriers between urban and natural spaces. At the core is an intricate agroforestry network, 
utilizing pixel farming and remote sensing. Interspersed trees double as crop supports and 
wildlife habitats, accessible to bio-mechanical harvesting robots and AI-controlled CyberCrows. 
AI orchestrates these havens, fostering harmony among humans, animals, plants, and soil 
micro-organisms. Intelligent checkpoints manage visitor access, ensuring minimal human 
interference. AI-controlled robots monitor crops, combat pests, and execute precise harvesting, 
exemplifying regenerative responsibility and ecological equilibrium. 
 
Among these technological advancements, CyberCrows stand out as a remarkable 
AI-controlled agroforestry swarm system. They seamlessly merge with nature, sampling in-vivo 
cells and injecting natural agro-microbials to promote crop-microbe synergy for increased 
growth. As a collective intelligence, CyberCrows ensure interspecies communication, 
environmental control, and pest prevention with non-toxic methods like sound waves and 
lasers. Additionally, they offer immersive art experiences, aligning with AI ethics and providing a 
unique, interconnected journey through their perspective. 
 
The overarching scenario envisions an innovative hybrid encompassing traditional agriculture, 
agroforestry, and lab-grown food products. This sustainable symbiosis is powered by a diverse 
array of cutting-edge technologies, including AI, IoT, robotics, and remote sensing. The 
integration of these technologies is humanised through communal experiences enriched by 
immersive art and gamification, ensuring data transparency, compliance with AI ethical 
standards, and fostering a sense of community. 
As the scenario transitions from macro to mezzo and micro levels, novel features emerge, such 
as edible electronics and soft robotics, pushing the boundaries of culinary experiences. A 
distinctive highlight is the introduction of personalised augmented sensory dining 
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experiences intricately woven with personal data. This approach not only allows for the 
incorporation of the individual into the culinary process but also addresses the complexities of 
data ownership in a hyperconnected, post-globalised world characterised by both centralised 
and decentralized influences, impacting every facet of our in-real-life (IRL) and online (URL) 
existence.  
 
In this narrative, the coexistence of natural and digital ecologies is paramount, presenting a 
holistic vision where technology and nature seamlessly intertwine to shape the future of our 
food experiences, promoting sustainability, well-being, and inclusivity. 
 
Technological trends 
 
Among the technological trends identified by this scenario we find: ChatGPT, and more broadly 
Generative AI, which is anticipated to be a groundbreaking solution for robotics as well; 
Robotics manipulation, in particular looking at methods for hybrid hierarchical learning that 
are capable to solving complex sequential tasks such as ROMAN (Triantafyllidis et al, 2023), 
and robot scarecrows implemented by the Akita Prefectural University; Interspecies 
communication through AI, which is said to potentially create a new ecology of sustainable 
competitions (e.g. attract natural predators ad hoc to solve a pest); IoT and data-driven 
agriculture, where robots can leverage remote sensing and use fairness trained optimisation 
algorithms enabling a new era of renewed co-existence; Big data and hidden patterns, which 
are detected by computational methods and help farmers and non-human agents to make 
better predictions/decision in a decentralised networkers ecosystem with a holistic perspective; 
Gamification, to incentivise community building. 
 
Among the elements for this review is the “Technological Advancements”, envisioning 
technologically advanced and interconnected agroforestry hubs. Cutting-edge innovations 
support sustainable agriculture. Drones equipped with artificial intelligence analyse soil health, 
providing valuable insights. Nanobots enhance plant growth by delivering precise doses of 
tailored nutrients. The fusion of biotechnology and AI has given rise to "EcoTech-AIs." These 
sentient AI systems are designed to coexist harmoniously with nature, working symbiotically to 
optimize agricultural practices and ensure ecosystem longevity. 
 
What are the main technological components that can be inferred from this project? 
 
Overall, this scenario is very rich in terms of technological components and related challenges. 
It also shares vision and challenges with other projects. 
 

●​ Gamification techniques can be employed to incentivise community building and 
engagement in sustainable agriculture practices. By integrating gamified elements such 
as rewards, challenges, and progress tracking, individuals can be encouraged to 
participate in activities that contribute to the well-being of the agroforestry ecosystem. 
This could include tasks such as monitoring crop health, identifying pests, and sharing 
knowledge and experiences with others. Gamification can help foster a sense of 
community and collective responsibility for the success of BioHarvest Haven, while also 
making the learning process more engaging. 
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●​ Robotics is a core technological component in this scenario. Bio-mechanical harvesting 
robots navigate the agroforestry network with agility and precision, harvesting crops with 
minimal damage to the environment. These robots are equipped with advanced sensors 
and algorithms, allowing them to differentiate between ripe and unripe crops, ensuring 
selective harvesting to prevent wastage. AI-controlled CyberCrows, on the other hand, 
seamlessly blend with nature, acting as guardians of the agroforestry ecosystem. 

●​ Internet of Things (IoT) weaves a seamless web of connectivity across BioHarvest 
Haven, linking various devices and sensors throughout the agroforestry network. This 
complements the robots’ sensing capabilities discussed before. Soil moisture sensors, 
temperature gauges, and nutrient monitors gather real-time data, providing AI systems 
with a constant stream of information. This data is then analysed and utilised to make 
informed decisions about irrigation, fertilization, and pest control, ensuring optimal 
growing conditions for crops. Additionally, IoT devices enable remote monitoring and 
control of agricultural processes. Farmers can access real-time data and manage their 
crops from anywhere, using their smartphones or tablets. This level of connectivity 
allows for quick responses to changing conditions, minimizing losses and maximising 
yields. 

●​ Artificial Intelligence methods could implement the machine intelligence backbone of 
BioHarvest Haven, harmoniously orchestrating the interactions between humans, 
animals, plants, and soil micro-organisms based on the gamification strategy set. The 
use of AI also extends to the robots’ sensing capabilities, monitoring crop growth, 
detecting and combat pests in real-time, and executing precision harvesting. This 
ensures regenerative responsibility and maintains ecological equilibrium. 

●​ Remote Sensing sensing technologies, such as drones equipped with advanced 
cameras and sensors, can also play a crucial role in monitoring crop health and soil 
conditions. These drones fly over the agroforestry network, collecting valuable data that 
is then analysed by AI systems. This information helps farmers identify areas of stress 
or disease in their crops, enabling targeted interventions to prevent the spread of pests 
and diseases. 

●​ Blockchain technology provides a secure and transparent foundation for BioHarvest 
Haven. All agricultural data, including crop yields, soil conditions, and pest management 
strategies, are recorded on the blockchain, ensuring data transparency and compliance 
with AI ethical standards. This fosters a sense of community and trust among all 
stakeholders, from farmers to consumers. 

 
Does this project envision a HM interaction? 
 
In this envisioned future of farming, humans and robot manipulators form a symbiotic 
partnership, fundamentally challenging agricultural practices. Through extensive use of sensory 
devices and advanced machine learning algorithms to process such multimodal information, 
robot manipulators will act as tireless assistants, monitoring crop growth, detecting and 
eliminating pests, and executing harvesting with unmatched precision. This collaboration will 
enable farmers to optimise crop yields while minimising resource usage and reducing 
environmental impact. To design this system, we can envision human-robot interaction as a 
collaborative partnership where humans provide high-level guidance, setting goals and making 
decisions, while robots handle repetitive, complex, and potentially hazardous tasks. This 

 ​  



D4.5 - UX INTERACTION GUIDELINES 

 
43 

division of labor will allow farmers to focus on strategic decision-making, innovation, and 
value-added activities. 
 
To enhance the interaction between humans and robot manipulators, elements of NLP and 
affective computing can be incorporated. This will allow robots to understand and respond to 
human emotions, making the interaction more intuitive and engaging. Additionally, robots can 
be designed with user-friendly interfaces and intuitive control mechanisms, allowing farmers 
with varying levels of technical expertise to interact with them easily. 
 
If so, how can this technology be made more human? 
 
To foster a deeper sense of connection and trust between humans and robot manipulators, the 
integration of social robotics should also be considered. As detailed in Section 2, robots can be 
designed with human-like features and behaviors, such as facial expressions and body 
language, to make them more relatable and approachable. This has the potential to enhance 
the sense of collaboration and mutual understanding, making the human-robot partnership 
more harmonious and productive. 
 
What are the main risks associated with the use of these technologies? 
 
The main risks associated with the use of technologies include the potential disruption of the 
delicate balance of the ecosystem. While autonomous agents are designed to work in harmony 
with nature, their advanced capabilities could inadvertently harm the environment if not properly 
managed. Additionally, the integration of AI and IoT devices raises concerns about data 
privacy and security. The collection and analysis of vast amounts of agricultural data could 
create opportunities for unauthorised access and misuse, potentially compromising sensitive 
information and disrupting the operations of BioHarvest Haven. It is crucial for the project's 
developers to address these risks by implementing robust security measures, ensuring 
transparent data governance, and engaging in ethical decision-making processes to mitigate 
potential negative consequences. 
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S10: The Cooking Ape Institute 

 
 
Outline. In a society heavily reliant on digital technology, the importance of sensory activities for 
human well-being is often overlooked. Despite the human brain being wired for a pre-digital era, 
the senses work in unison to enable the perception of the world. In the culinary realm, 
multi-sensory experiences are particularly prominent, with various senses contributing to a 
shared experience. To address this, there is a growing interest in "food as medicine" and 
personalised nutrition. However, looking beyond nutrition itself, considering the broader context 
of food preparation reveals even greater potential. The preparation of food is linked to the 
development of fine motor skills, technologies, and material handling. While food preparation 
was once arduous and driven by automation, contemporary Western society presents an 
opportunity for food preparation to take on new significance for mental well-being. Technologies 
such as brain wave analysis, AI-driven recipe development, and microbiome sequencing can 
help achieve this vision. Opportunities exist for companies to offer personalised nutrition 
solutions, AI-driven recipe development, and innovations in technology-enhanced kitchen 
appliances. By aligning with the scenario's emphasis on health-optimized meals and stress 
reduction, companies can foster innovation and drive advancements in holistic, 
technology-enhanced food preparation. 

What are the main technological components that can be inferred from this project? 

This scenario highlights the intersection of technology and culinary experiences, focusing on 
well-being. Key technological components include the pointers below. 

●​ Brain Wave Analysis (EEG): As described, EEG is used to measure and interpret brain 
activity, providing insights into cognitive states, emotions, and arousal levels. This 
technology could be integrated into wearable devices or kitchen appliances to monitor 
users' mental states during food preparation and consumption. Relevant HRI literature 
includes Chanel et al. (2009) on using EEG for emotion recognition and Mühl et al. 
(2014) on brain-computer interfaces in real-world settings. 

●​ AI-Driven Recipe Development: AI algorithms analyse user data (dietary needs, 
preferences, brain states) to generate personalised recipes. This could involve natural 
language processing for understanding user input and machine learning for recipe 
generation. Elsweiler et al. (2017) explore personalised recipe recommendations, while 
Goel & Bagler (2022) delve into data-driven applications in gastronomy. The user 
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interaction component is also very relevant, and for instance, the work by Shneiderman 
on direct manipulation interfaces (Shneiderman, 1983) can help to design this type of 
technology. 

●​ Microbiome Sequencing: DNA sequencing analyses the gut microbiome to provide 
insights into individual health and inform personalised nutrition recommendations. This 
technology could be integrated with AI-driven recipe development to tailor meals for 
optimal gut health. 

●​ Smart Kitchen Appliances: The scenario implicitly suggests the development of smart 
appliances that integrate with brain wave analysis and AI-driven recipe systems. These 
appliances could adjust cooking parameters (e.g., temperature, time) based on user's 
mental state and recipe requirements. For example, an oven could automatically adjust 
its temperature based on a user's stress levels, detected through brain wave analysis, to 
promote relaxation during cooking. This area relates to the broader field of the Internet 
of Things (IoT) and ambient intelligence (Aarts & De Ruyter, 2009). Norman's work on 
the design of everyday things also informs the development of kitchen appliances to 
support the users (Norman, 1988). 

Does this project envision a HM interaction? 

The project strongly envisions human-machine interaction, particularly between users and 
AI-driven systems, smart kitchen appliances, and data-driven feedback mechanisms. The goal 
is to create a seamless and intuitive experience where technology supports and enhances the 
human experience of food preparation and consumption for well-being. 

If so, how can this technology be made more human? 

●​ Personalisation: Tailoring recipes, cooking guidance, and environmental adjustments 
(e.g., lighting, music) to individual users' needs, preferences, and real-time emotional 
states can increase the adoption of these technologies. Personalisation and service 
robots can further this vision (de Berardinis et al., 2020). 

●​ Explainable AI (XAI)  methods can provide transparent explanations for their recipe 
recommendations and cooking adjustments. Users should understand why a particular 
ingredient or technique is suggested, fostering trust and engagement (Miller, 2019). 

●​ Affective computing principles can be integrated to enable technology to recognise 
and respond to user emotions while cooking. For instance, a system could detect 
frustration and offer simplified instructions or calming music (Picard, 1997, Coutinho et 
al., 2021). 

●​ Multimodal interaction, such as voice control, gesture recognition, and visual 
feedback, can create a more natural and engaging experience (Oviatt, 2003). For 
example, users could verbally request recipe modifications, use hand gestures to control 
appliances, and receive visual feedback on their states through lighting. 

●​ Gamification: as seen in the previous scenario, incorporating game-like elements (e.g., 
challenges, rewards) can motivate users to engage in healthy cooking practices and 
explore new recipes (Deterding et al., 2011). 

What are the main risks associated with the use of these technologies? 

 ​  



D4.5 - UX INTERACTION GUIDELINES 

 
46 

The collection and analysis of highly sensitive data, such as brain waves and microbiome 
information, raise data privacy and security concerns, necessitating robust security measures 
and transparent data handling practices. Secondly, algorithmic bias within AI systems trained 
on non-representative datasets could perpetuate or exacerbate existing health disparities, 
requiring careful attention to data diversity and algorithm fairness during development. There is 
also a risk of fostering over-reliance on technology, potentially diminishing users' own 
culinary skills and intuition as they become overly dependent on automated guidance. Finally, 
the advanced nature of these technologies raises concerns about accessibility and equity, as 
they might not be affordable or available to everyone, potentially creating a divide between 
those who can benefit from them and those who cannot. 

S11: Poetry of Nutrition 

 
 
Outline. What are our true priorities? Is nutrition the most extensive field of destructive 
consumerism or a noble means of survival? Poetry of Nutrition is a realistic dystopian industrial 
saga with an optimistic and brave revolutionary twist. Let’s imagine the future we really want to 
have in spite of everything. 

By 2030, a global health crisis, both mental and physical, triggers widespread societal unrest 
and government overhauls. A new Nutritional Health System emerges, blending technology and 
psychotherapy. Soft robots, designed with empathetic, visually engaging behaviors, become 
central to this system, bridging generational divides and teaching people to control food 
production and the market. These robots, far more effective than previous health warnings, 
motivate genuine lifestyle changes. Art, humanities, medicine, and science converge in this new 
paradigm. 

Industry adapts, offering health-focused products like food therapy apps and pesticide 
monitoring drones. Outside the formal system, communities strengthen ties with local farmers, 
shifting from global brands to trusted, local food sources. A chain of practical empathy 
develops, rediscovering the meaning of community and collective health. 

Key technological trends underpinning this future include the development of edible robots, the 
use of robots as clinicians, AI-generated soft robots for rapid creation and durability, automation 
of kitchens with a focus on improving the standard of life and using robots as utilities, 
companions and pets rather than replacing workers in the food industry, the creation of 
self-healing and liquid robots, and biomimicry (imitating nature for sustainable design). 
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Elements of the Scenario 

●​ The Food Taster soft robot: A central figure, this soft robot is a kitchen utility, pet, and 
companion experiencing an existential crisis yet deeply caring for humans. It embodies 
the advancements in soft robotics that enable therapeutic interactions. 

●​ Technological advancement of robotics: Sophisticated soft and rigid robotics facilitate 
beneficial interactions and revolutionize food production. 

What are the main technological components that can be inferred from this project? 

This scenario envisions a future where technology plays a crucial role in a new "Nutritional 
Health System" aimed at improving public health. Key technological components include: 

●​ Soft Robotics as a core technology, with an emphasis on edible, biomimetic, and 
AI-generated soft robots.These robots are envisioned as companions, kitchen 
assistants, and therapeutic tools. Edible robots made from materials like gelatin, 
potentially for therapeutic purposes or to redefine the concept of food. This area draws 
on material science and bioengineering. Relevant research includes work on edible 
electronics (Floreano et al., 2024, Irimia-Vladu, 2014) and biodegradable materials for 
robotics (Laschi et al.,2012). Biomimetic robots are designed based on biological 
organisms, particularly octopuses, for their dexterity and adaptability. This leverages 
principles of biomimicry to create robots with fluid movement and potentially, a more 
organic appearance, as highlighted in the work by Kim et al. (2013) and Cianchetti et 
al.,(2018). Also, robots can be designed and potentially fabricated using AI methods, 
enabling rapid prototyping and adaptation. This could involve generative design and 
machine learning for optimising robot form and function. Lipson & Kurman (2016) 
provide insights into "fab labs" and self-replicating machines. Finally, another trend is 
that of self-healing and liquid robots – soft robots with self-healing capabilities, and 
liquid robots with shape-shifting abilities. This area intersects with materials science and 
research on autonomous systems. The work by Terryn et al. (2021) is particularly 
relevant here. 

●​ Robot clinicians are used in therapeutic settings, building on existing research on 
robots for weight loss, dementia care, and elderly companionship. This involves 
integrating AI for personalised interaction and potentially, emotional intelligence. 
Broadbent et al. (2009) provide a review of robots in healthcare. 

●​ Food therapy apps are mobile applications that provide personalised nutritional 
guidance, potentially integrated with data from soft robots and other sensors. This 
requires expertise in user interface design, data visualisation, and potentially, behaviour 
change techniques. 

●​ Pesticide monitoring drones: Drones equipped with sensors to monitor pesticide 
levels in agricultural settings,supporting the shift towards local and sustainable food 
sources. This combines drone technology with environmental sensing. 

●​ Statistical dishes: This concept is less clearly defined but could refer to smart 
kitchenware that analyses food composition and provides nutritional feedback to users. 
This involves integrating sensors and data analysis into everyday objects. 
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●​ Educational and therapeutic games: Computer games designed to promote healthy 
eating habits and potentially address mental health issues related to food. This draws on 
principles of game design, persuasive technology, and potentially, cognitive behavioural 
therapy. 

Does this project envision a HM interaction? 

The project envisions extensive HMI through interactions with soft robots ("The Food Taster") 
that serve as companions, therapists, and kitchen assistants. The scenario also implies 
interactions with food therapy apps, smart kitchenware, and potentially, virtual environments 
within therapeutic games. 

If so, how can this technology be made more human? 

●​ Empathy and emotional Intelligence: Programming robots with empathetic responses 
and the ability to recognise and respond to human emotions is crucial. This involves 
research in affective computing and social robotics (Breazeal, 2003). 

●​ Aesthetic design: Creating robots with "somatosensory and visually opulent behaviour" 
can enhance their appeal and acceptance. This requires collaboration between 
engineers, designers, and artists. 

●​ Personalisation: Tailoring robot behaviour, appearance, and interactions to individual 
user preferences and needs can foster stronger bonds and improve therapeutic 
outcomes. 

●​ Transparency and explainability: Users should understand the robot's actions and 
motivations, especially in a therapeutic context. This relates to the field of XAI. 

●​ Focus on shared activities: Designing robots to participate in shared activities, such 
as cooking, eating, or playing games, can strengthen HR relationships. 

●​ Integration with social networks: Connecting users with local farmers and food 
producers through technology can foster a sense of community and belonging. 

What are the main risks associated with the use of these technologies? 

The envisioned project presents several risks, including the potential for over-reliance on 
robots for social and emotional needs, potentially hindering human connection.  Deskilling in 
areas like cooking is possible as automation increases. Ethical dilemmas arise concerning the 
use of robots as therapists, raising questions about authenticity and potential manipulation 
within the therapeutic relationship. Data privacy and security are major concerns given the 
sensitive nature of personal information collected by these systems. Furthermore, social 
inequalities could be exacerbated if access to these technologies is not equitable. Finally, the 
use of edible robots introduces potential food safety, consumer acceptance, and ecological 
concerns. 
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S12: Healthy Food Protocols 

 
 
Outline. The deep political, economic and social crisis has seen Serbia of 2034 as a country of 
the poor, leaving almost every seventh resident below the minimum survival income. The “Right 
to Food” protocol has been adopted to enable a sustainable, social and united economy of 
healthy food chains in big cities by operating within community urban farms. 
 
The scenario envisions innovative community tech and AI-managed farms to enhance food 
security, nutritional value, and personalized consumption. Technology facilitates information 
gathering, improves regenerative agriculture, and optimises supply chains. Key elements 
include urban planning that prioritises experimental gardens and larger urban farms, alongside 
an augmented reality game to engage citizens in the planning process. An online platform will 
integrate the digital, physical, and social aspects of the farm, fostering a sharing economy and 
incorporating traditional knowledge. An educational centre will offer learning in agriculture, 
robotics, and AI, featuring immersive mixed-reality experiences. Farms are designed for 
self-sufficiency, inspired by Palmanova's historical layout, with a focus on supporting the elderly 
through a "produce + sell + consume" model and food deliveries. Collaborative robots will 
compensate for labour shortages, assisting in tasks from growing vegetables to contactless 
delivery. A "brace" prototype will collect health data, enabling remote digital food control and 
direct food deliveries to those in need. Repurposing smartphones as building "bricks" will allow 
citizens to contribute data to the farm's structure, fostering real-time communication within the 
community. The overall philosophy aims to rebuild faith in communities based on ecological, 
cultural, and humanist values, strengthening ties between humans, non-humans, and AI. 

What are the main technological components that can be inferred from this project? 

This scenario envisions a future where technology is deeply integrated into urban farming and 
community building to address food insecurity and social inequality. Key technological 
components include and intersect with the following directions. 

●​ AI-Driven Farm Management  can provide algorithms to optimise farm operations, 
including resource allocation, crop management, and yield prediction. This involves 
machine learning models trained on data from various sources (sensors, weather 
patterns, historical yields) to enhance decision-making processes. Relevant research 
includes Liakos et al. (2018) on machine learning in agriculture. Its use can also support 
decision-making processes that maintain food security, increase the nutritional value of 
food, secure the most personalised food consumption model and therefore improve the 
health and the overall human condition. 
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●​ Collaborative Robots (Cobots) working alongside humans in various farm tasks, such 
as planting,harvesting, sorting, and food preparation. These robots are designed for safe 
and efficient human-robot collaboration, potentially incorporating advanced sensing, 
dexterity, and AI for adaptability. This area is covered by Cherubini et al. (2016) on 
collaborative manufacturing with physical human-robot interaction, and by Ravichandar 
(2020) in the context of machine learning for control. 

●​ Sensor Networks (IoT) throughout the farm and in wearable devices (e.g., the "brace") 
to collect data on environmental conditions, plant health, human health metrics, and 
food consumption patterns.This data feeds into AI systems and provides real-time 
insights for farm management and personalised nutrition.The work by Tzounis et al. 
(2017) is particularly relevant in this context. 

●​ Blockchain Technology can be potentially used for supply chain management, 
ensuring transparency and traceability of food from farm to table. It could also facilitate a 
sharing economy model for surplus produce. This is a less central technology in the 
scenario but aligns with the broader trend of using blockchain in food systems (Caro et 
al., 2018). 

●​ Augmented Reality (AR) and Virtual Reality (VR) technologies are used for 
educational purposes, and would allow visitors to experience immersive learning about 
farming techniques, plant growth, and the overall ecosystem of the urban farm. This 
leverages the potential of AR/VR for experiential learning and engagement (Billinghurst 
et al., 2015). 

●​ Generative AI can also be integrated in a data-driven infrastructure to enhance the 
ecological performance of the urban farm. The use of generative design tools can help 
to incorporate traditional knowledge into the design and operation of the farm. 

●​ Online Cloud Platform ("The Right to Food"): A digital platform for community 
engagement, resource sharing,knowledge exchange, and data analysis. This platform 
integrates data from various sources (sensors, user inputs,etc.) and uses algorithms to 
generate insights and facilitate communication. 

●​ "Community Gadgets" (e.g., "Brick"): Innovative use of personal devices, such as 
smartphones, as building components in the farm's infrastructure, enabling data 
collection and real-time communication within the community. This explores the 
convergence of personal technology, architecture, and community participation. 

Does this project envision a HM interaction? 

The project envisions a high degree of HMI. Humans interact with: 

●​ Collaborative robots, working alongside robots in farming and food-related tasks; 
●​ AI Systems, receiving personalised recommendations and insights from AI-driven 

systems based on sensor data and user inputs; 
●​ AR/VR environments, engaging in immersive educational experiences; 
●​ Online Platform, participating in community forums, sharing resources, and accessing 

information; 
●​ "Community Gadgets", contributing data and interacting with the built environment 

through personal devices. 
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If so, how can this technology be made more human? 

●​ Focus on human-robot collaboration to design robots and intelligent systems to work 
collaboratively with humans, augmenting human capabilities rather than fully automating 
them (Semeraro et al., 2023). 

●​ User-centred design principles can support the creation of intuitive, user-friendly, and 
accessible interfaces for the various technologies in this scenario, ensuring accessibility 
for diverse users, including the elderly and those with disabilities. 

●​ Transparency and explainability mechanisms can make AI decision-making processes 
transparent and understandable to users, fostering trust and engagement. 

●​ Community ownership should be incentivised to shape the design, implementation, and 
use of technology, ensuring it aligns with their values and needs. 

●​ Emphasis on social Interaction through technology, to facilitate social connections and 
community building, both online and offline. The "brace", for instance, can provide 
valuable feedback to the user, and this can be integrated with strategies to increase 
human-human interaction. 

●​ Integration of traditional knowledge should be considered, thereby incorporating 
traditional farming practices and local knowledge into AI systems and educational 
programs. This can be achieved through Semantic Web technologies and 
(neuro-)symbolic approaches to achieve both interoperability and explainability. 

●​ Aesthetic and emotional considerations should also be considered to design robots and 
virtual environments that are not only functional but also aesthetically pleasing and 
emotionally engaging. 

What are the main risks associated with the use of these technologies? 

The reliance on advanced technologies also introduces potential risks. Data privacy and 
security are primary concerns, given the vast amounts of personal information collected, 
necessitating robust security and strict data governance. Algorithmic bias could perpetuate or 
exacerbate existing inequalities if AI algorithms are trained on biased data, impacting resource 
allocation and personalised recommendations. Technological dependence poses a threat, as 
over-reliance on these systems makes them vulnerable to technical failures or cyberattacks, 
potentially disrupting food production and community management. The potential for 
exacerbation of social divisions exists if access to technology or digital literacy is unevenly 
distributed, widening the gap between socioeconomic groups. Ethical concerns arise from 
using AI in decision-making, particularly regarding resource allocation and individual health, 
raising questions about autonomy, fairness, and accountability. Finally, the extensive use of 
sensors and data collection creates a risk of potential for surveillance, which could be 
misused, eroding individual freedoms and privacy. 

Outline of identified technologies 

Across the 12 scenarios, a diverse array of technologies is envisioned to support the envisioned 
futures of food, sustainability, and community well-being. Generative AI emerges as a 
prominent tool, employed for tasks ranging from crafting novel food products and recipes (S1, 
S10, S11) to designing robots (S7, S11) and optimising farm layouts (S12). Conversational AI 
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is primarily featured in scenarios focusing on education, training, and persuasion (S1), where it 
can facilitate personalised learning and promote the adoption of new practices through tailored 
interactions. Mixed Reality (MR), including Augmented and Virtual Reality, is frequently 
highlighted for its potential in education (S7, S12), offering immersive experiences that connect 
users with nature (S8), traditional ecological knowledge, and the intricacies of food production. 
Wearables and haptic technologies are proposed to bridge the gap between humans and 
their environment (S2, S6), providing sensory feedback on soil health (S2) or the impact of food 
choices (S6). Data, in general, plays a crucial role in most scenarios. This includes data 
transformation and signal processing for tasks like converting soil data into actionable 
insights (S2, S3) or visualising complex ecological relationships (S3). Data mining techniques, 
often powered by Big Data analytics, are envisioned for tasks like identifying food fraud (S3), 
optimising agricultural practices (S4, S12), and personalising nutrition (S4, S10, S11). 
Blockchain technology is suggested for enhancing transparency and traceability in the food 
supply chain (S3, S4, S6, S9, S12), as well as for managing data provenance (S6). 

The Internet of Things (IoT) is a recurring theme, enabling the creation of interconnected 
networks of sensors in farms (S9, S12), kitchens (S10), and even on the human body (S2, S6). 
These sensor networks, often including drones (S8, S11,S12) and other audio computing 
devices (S8, S12), generate vast amounts of data that are analysed using AI and machine 
learning. The use of computer vision is also envisioned for analysing such data. Robotics is 
envisioned both in the form of autonomous agricultural robots for tasks like harvesting and 
monitoring (S5, S9, S11, S12) and in the more experimental form of soft robots for therapeutic 
human-machine interaction (S11). Gamification is proposed as a tool to encourage 
engagement and behaviour change, particularly in the context of community participation and 
education (S9,S10, S11, S12). 

Several common threads emerge regarding technology use across the scenarios. There is a 
strong emphasis on using technology to promote sustainability, enhance human well-being, and 
foster a more harmonious relationship between humans and nature. Data-driven 
decision-making, often powered by AI and machine learning, is seen as crucial for optimising 
resource use, improving food production, and personalising nutrition. Human-machine 
interaction is a key consideration, with many scenarios envisioning collaborative partnerships 
between humans and robots or AI systems. The importance of user-friendly interfaces, 
personalised feedback, and transparent AI algorithms is highlighted throughout. Moreover, 
many scenarios emphasise the need to integrate technology with traditional ecological 
knowledge and community values. Overall, we can see the emphasis on using data to inform 
decisions across scenarios. 
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Technology 

MUSAE projects 

1 2 3 4 5 6 7 8 9 10 11 12 

Big data             

Generative AI             

Conversational AI             

AR/VR             

Wearables             

Haptic technologies             

Data transformation             

Signal processing             

Data analysis             

Blockchain             

Internet of Things (IoT)             

Robotics             

Computer vision             

Drones             

Audio Computing             

Gamification             

Affective Computing             

Neurotechnology             

2) Overview of interaction guidelines 
Building on the technological review of the MUSAE scenarios, we now focus on 
human-machine interaction (HMI), particularly human-robot interaction (HRI), within those 
scenarios featuring interactive robotic systems. This section presents guidelines for designing 
these interactions, ensuring they are intuitive, engaging, and ethically sound. Drawing from 
established HCI and HRI principles, with an emphasis on multimodal interaction, these 
guidelines cover key aspects such as robot appearance, behaviour, communication, 
collaboration, and ethical considerations. While broadly applicable, they are tailored to the 
MUSAE context, where technology aims to enhance our relationship with food, promote 
sustainability, and foster community. The following sections detail these guidelines, illustrated 
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with examples from the scenarios, culminating in a dedicated section on multimodal interaction 
and a framework for evaluating HRI effectiveness within the project. They are intended to be 
adaptable to the specific context of each scenario. 

Robot Appearance and Embodiment 

Guideline: Carefully consider the robot's appearance and form factor, aligning it with the 
intended function, interaction context, and user expectations. The robot's appearance 
significantly impacts human perception, trust, and willingness to interact. 

A robot's form should match its function. A robot designed for industrial tasks may prioritise a 
robust and efficient design, while a social robot might benefit from a more approachable and 
friendly appearance. Consider the user's cultural background and prior experiences with robots, 
as these can influence their expectations and reactions. 

Relevant literature 

●​ DiSalvo et al. (2002) explore how different design features of robot heads influence 
human perception, highlighting the importance of considering the specific context and 
desired interaction when designing a robot's appearance. They emphasise that a 
"one-size-fits-all" approach to robot design is not effective. 

●​ Goetz et al. (2003) demonstrate that aligning a robot's appearance with its behaviour 
leads to improved cooperation and task performance in human-robot teams. It suggests 
that a robot's appearance sets up expectations about its capabilities, and when these 
expectations are met, interaction becomes more natural and efficient. 

Scenario Examples 

●​ In S11 (Poetry of Nutrition), soft robots serving as therapeutic companions might 
benefit from an aesthetically pleasing, organic, and perhaps biomimetic design. This 
could involve soft, rounded shapes, warm colors, and textures that invite touch. Edible 
robots in this context add another layer of complexity, requiring a balance between 
visual appeal, food safety, and palatability. 

●​ In S5 (One Health Recipes), "Robot Guardians of Nature" should have a 
non-threatening appearance that blends with the environment. This might involve 
camouflage, natural colors, and designs inspired by animals or plants. The goal is to 
minimise disturbance to wildlife while still being recognisable as a technological artifact. 

●​ In S7 (What the World Eats), biorobotics used in food handling should prioritize a 
hygienic appearance, suggesting cleanliness and safety. Functionality and ease of 
cleaning are paramount here, potentially leading to a more industrial or clinical aesthetic. 

●​ In S9 (From Farm to Table), bio-mechanical harvesting robots could have a utilitarian, 
robust design that conveys strength and efficiency. The CyberCrows, however, present 
a unique challenge, needing to balance a bird-like appearance with the need to avoid 
being perceived as a threat by either humans or other animals. 
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Guideline: Strive for a balance between anthropomorphism and functionality. While some level 
of human-likeness can facilitate social interaction, overly realistic robots can fall into the 
"uncanny valley," evoking negative reactions. 

Anthropomorphism can be a powerful tool for creating engaging social robots, but it is a 
double-edged sword: robots that are too human-like but not perfectly so can trigger a sense of 
unease or revulsion. The "uncanny valley" hypothesis suggests that finding the right level of 
abstraction is key. 

Relevant literature 

●​ Mori (1970) introduced the concept of the uncanny valley, a phenomenon where 
almost-human-like entities elicit negative emotional responses. While originally 
proposed for humanoids, the concept has been applied more broadly to other forms of 
artificial agents. The uncanny valley remains a crucial consideration in robot design, 
particularly when aiming for social interaction. 

Scenario Example: In S6 (Holobiont Futures), social robots designed to educate people 
about the microbiome should avoid being overly realistic. A stylised, friendly appearance, 
perhaps with exaggerated features or cartoonish proportions, might be more effective in 
creating a positive and engaging interaction. 

Robot Behaviour and Movement 

Guideline: Design robot movements to be predictable, legible, and safe, especially in shared 
workspaces. 

When robots and humans share a physical space, it's crucial that the robot's actions are easily 
understandable and anticipated. Predictable movements allow humans to react appropriately 
and avoid collisions or other unsafe situations. Legibility refers to the ability of an observer to 
infer the robot's intentions from its movements. 

Relevant literature 

●​ Dragan et al. (2013) provide a formal framework for understanding and designing 
legible robot motion. They argue that legible motion allows observers to quickly and 
accurately infer the robot's goal, while predictable motion allows them to anticipate the 
robot's future trajectory. Applying these principles in shared workspaces is essential for 
safety and efficient collaboration. 

Scenario Examples 

●​ In S12 (Healthy Food Protocols), collaborative robots (cobots) working alongside 
humans in urban farms must have clear movement patterns. They should avoid sudden 
changes in direction or speed and use clear signals (e.g., lights, sounds) to indicate their 
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intentions. This allows human co-workers to anticipate the robot's actions and work 
safely alongside them. 

●​ In S9 (From Farm to Table), the bio-mechanical harvesting robots should move in a 
way that is predictable to both humans and animals in the agroforestry environment. 
This might involve following predefined paths, using consistent speeds, and signaling 
any changes in direction or activity. 

Guideline: Adapt robot behavior to the specific task and context. 

Robots should be able to adjust their behavior based on the situation. This requires a degree of 
autonomy and the ability to sense and interpret the environment. Interactive autonomy involves 
finding the right balance between autonomous behavior and human control. 

Relevant literature 

●​ Hoffman (2012) explores how robots can blend autonomous behaviors with 
responsiveness to human input, enabling flexible and adaptive interaction across a 
range of tasks and environments. The concept is particularly relevant when robots need 
to adapt to dynamic situations or work closely with humans. 

Scenario Examples 

●​ In S5 (One Health Recipes), a robot guardian's behavior might change depending on 
the situation. During routine monitoring, it might move slowly and deliberately to avoid 
disturbing wildlife. However, if it detects a threat to an endangered species, it might need 
to move quickly and assertively to intervene. 

●​ In S11 (Poetry of Nutrition), a robot chef might use precise, efficient movements when 
chopping vegetables but adopt more expressive, gentle movements when interacting 
with a user in a therapeutic setting. The robot's behavior should reflect the emotional 
context of the interaction. 

Communication and Social Interaction 

Guideline: Employ multimodal communication that combines verbal and non-verbal cues, 
tailored to the interaction context. 

Humans communicate through a variety of channels, including speech, facial expressions, 
gestures, and body language. Robots that can both understand and generate these 
multimodal signals can interact more naturally and effectively with humans. The specific 
combination of modalities should be chosen based on the task, environment, and user 
preferences. 

Relevant literature 

●​ Breazeal (2002) provides a comprehensive overview of the principles and challenges of 
designing robots that can engage in natural and effective social interaction with humans. 
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It emphasizes the importance of multimodal communication, including facial 
expressions, body language, and speech, in creating believable and engaging social 
robots. The principles outlined in this work are highly relevant to scenarios involving 
social robots, such as S6 and S11. 

Scenario Examples 

●​ In S6 (Holobiont Futures), social robots educating about the microbiome could use 
speech to explain complex concepts, facial expressions to convey enthusiasm or 
concern, gestures to point out relevant information, and even changes in color or texture 
to represent different types of microbes. For example, a robot might smile and use an 
upbeat tone of voice when discussing beneficial bacteria, while adopting a more serious 
expression and tone when explaining the risks of harmful pathogens. They need to 
communicate effectively using both verbal and nonverbal cues. 

●​ In S12 (Healthy Food Protocols), a cobot might use indicator lights to signal its 
intentions (e.g., "moving left," "picking up object") and simple sounds to acknowledge 
human instructions. For instance, a green light might indicate that it is safe for a human 
to approach, while a red light and a beeping sound might signal a warning. 

Guideline: Develop social robots with appropriate social intelligence, enabling them to 
understand and respond to social cues, adapt to different personalities, and build rapport. 

Social intelligence involves the ability to perceive, interpret, and respond appropriately to 
social signals. This includes understanding social norms, recognising emotions, and adapting 
one's behavior to different social contexts. For robots designed for social interaction, developing 
a degree of social intelligence is crucial for creating engaging and effective interactions. 

Relevant literature 

●​ Fong et al. (2003) provide a broad overview of the field of socially interactive robotics, 
covering various aspects such as robot appearance, behavior, and social intelligence. 
They highlight different approaches to endowing robots with social skills and discuss the 
challenges involved in creating robots that can interact naturally and effectively with 
humans in various social contexts. 

●​ Leite et al. (2013) contributed a survey that focuses specifically on the challenges of 
creating social robots that can maintain engaging interactions with users over extended 
periods. They emphasize the need for robots to be adaptive, learn from their 
interactions, and develop a model of the user's personality and preferences to sustain 
long-term engagement. These considerations are particularly relevant for scenarios like 
S11, where robots are envisioned as long-term therapeutic companions. 

Scenario Example 

In S11 (Poetry of Nutrition), robot therapists need a high degree of social intelligence to 
engage in meaningful therapeutic interactions. This requires advanced emotion recognition 
capabilities, allowing them to detect subtle changes in a user's facial expressions, tone of voice, 
and body language. They also need to be able to adapt their communication style and 
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therapeutic approach based on the user's personality and emotional state, demonstrating 
empathy and building a strong therapeutic relationship over time. 

Guideline: Ensure transparency and explainability in robot communication, particularly when AI 
is involved in decision-making. 

Users are more likely to trust and accept robots if they understand how they make decisions, 
especially when those decisions impact the user directly. Explainable AI (XAI) aims to make the 
reasoning behind AI algorithms more transparent and understandable to humans. This can 
involve providing explanations for specific actions, visualizing the decision-making process, or 
allowing users to query the system. 

Relevant literature 

●​ Miller (2019) argues that explanations should be tailored to the audience and the 
specific context, drawing on principles from social sciences. They suggest that 
explanations should be contrastive (explaining why one decision was made over 
another), selective (focusing on the most important factors), and social (presented in a 
way that is understandable and relatable to the user). These insights can inform the 
design of robot communication strategies, particularly when robots need to justify their 
actions or recommendations. 

Scenario Example 

If a robot in S10 (The Cooking Ape Institute) suggests a recipe change based on brainwave 
analysis, it should be able to provide a simple, understandable explanation for its 
recommendation. For example, it might say, "I'm suggesting adding more carbohydrates 
because your brain activity suggests you might need an energy boost." This explanation is 
contrastive (adding carbs vs. not adding them), selective (focusing on brain activity and energy), 
and social (using relatable language). 

Human-Robot Collaboration 

Guideline: Design for intuitive and efficient collaboration, clearly defining roles and 
responsibilities for humans and robots. 

Successful human-robot collaboration requires a clear understanding of who does what. This 
involves carefully considering the strengths and weaknesses of both humans and robots and 
allocating tasks accordingly. Humans excel at tasks requiring creativity, adaptability, and 
complex decision-making, while robots are well-suited for repetitive, physically demanding, or 
precision-oriented tasks. 

Relevant literature 

●​ Goodrich & Schultz (2007)  provide a comprehensive overview of the field of HRI, 
including various aspects of human-robot collaboration. They discuss different 
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interaction paradigms, such as supervisory control, peer-to-peer interaction, and shared 
control, and highlight the importance of designing for clear roles, responsibilities, and 
communication in collaborative tasks. The principles outlined in this survey are 
applicable to a wide range of collaborative scenarios. 

●​ Cherubini et al. (2016) focus specifically on human-robot collaboration in industrial 
settings, where robots and humans work together in close proximity to perform 
manufacturing tasks. They discuss various aspects of physical human-robot interaction, 
such as collision avoidance, force control, and shared workspace management, which 
are highly relevant to scenarios like S12, where cobots are used in urban farming. 

●​ Semeraro et al. (2023) performed a systematic review on the most common 
approaches based on machine learning techniques in human-robot collaboration. They 
are used to either gather high-level information from the robot’s workspace or to directly 
compute the high-level actions that the robot needs to execute to progress in the 
collaboration with the human. The work categorizes scientific works based on type of 
collaborative tasks, cognitive variables modeled, type of machine learning used and 
sensing modalities employed.  

Scenario Examples 

●​ In S9 (From Farm to Table), farmers and bio-mechanical harvesting robots might have 
a clear division of labor. Humans could focus on higher-level tasks like planning, 
monitoring crop health, and making strategic decisions, while robots handle repetitive 
and physically demanding harvesting tasks. This leverages the robot's ability to work 
tirelessly and with precision, while allowing humans to apply their expertise and 
judgment. 

●​ In S12 (Healthy Food Protocols), humans and cobots might work together in an urban 
farm. Humans could handle delicate tasks like seeding, transplanting, and tending to 
fragile plants, while robots assist with heavier tasks like lifting, transporting materials, 
and performing repetitive tasks like weeding or pruning. Clear communication and 
coordination protocols are essential to ensure that humans and robots can work 
together safely and efficiently. 

Guideline: Provide appropriate interfaces for controlling and monitoring robots, considering 
user expertise and the complexity of the task. 

The way humans interact with robots is crucial for effective collaboration. Interfaces should be 
designed to be intuitive, easy to use, and tailored to the specific task and user group. This 
might involve graphical user interfaces (GUIs), voice control, gesture recognition, or even 
brain-computer interfaces, depending on the context. The complexity of the interface should 
match the user's level of expertise and the demands of the task. 

Relevant literature 

●​ Nielsen (1993) provides a comprehensive guide to designing user-friendly interfaces, 
emphasizing the importance of understanding user needs, conducting user testing, and 
iterating on designs based on feedback. The principles of usability engineering are 
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broadly applicable to the design of robot control interfaces, ensuring that they are 
efficient, effective, and satisfying to use. 

●​ Shneiderman (1983) introduced the concept of direct manipulation interfaces, where 
users interact with digital objects in a way that mimics real-world interactions. This 
approach can be applied to robot control, allowing users to directly manipulate virtual 
representations of robots or use gestures to control their movements. Direct 
manipulation can make robot control more intuitive and easier to learn. 

Scenario Examples 

●​ In S5 (One Health Recipes), an interface for remotely monitoring robot guardians might 
use maps, visualizations, and alerts to provide a clear overview of the robots' status and 
the ecosystem's health. The interface should be designed to be accessible to users with 
varying levels of technical expertise, allowing both scientists and members of the public 
to understand the data being collected. 

●​ In S9 (From Farm to Table), farmers might use a tablet or smartphone app to control 
and monitor drones and other robots. The app should have intuitive controls for tasks 
like setting waypoints, adjusting camera angles, and initiating specific actions. Real-time 
feedback from the robots, such as live video feeds and sensor readings, should be 
clearly displayed. 

Guideline: Foster trust through reliable performance, predictable behavior, and clear 
communication of the robot's capabilities and limitations. 

Trust is essential for effective human-robot collaboration. Users need to be able to rely on 
robots to perform their tasks safely and effectively. This requires robots to be reliable, 
predictable, and transparent about their capabilities and limitations. Clear communication 
about what the robot is doing, why it's doing it, and what it can and cannot do is crucial for 
building and maintaining trust. 

Relevant literature 

●​ Hancock et al. (2011) contributed a meta-analysis that identifies key factors that 
influence trust in HRI, including robot performance (reliability, predictability), robot 
attributes (appearance, communication style), and human factors (user's personality, 
prior experience with robots). The findings emphasise the importance of designing 
robots that are not only technically capable but also perceived as trustworthy by users. 
This is particularly important in scenarios where robots are entrusted with important 
tasks, such as handling food or providing therapy. 

●​ Freedy et al. (2007) explore different methods for measuring trust in HRI, including 
subjective questionnaires, behavioral measures, and physiological indicators. They 
highlight the multidimensional nature of trust and suggest that a combination of 
measures is often necessary to capture its complexity. Understanding how trust is 
formed and maintained is crucial for designing effective human-robot collaborative 
systems. 
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Scenario Example: In any scenario involving close human-robot collaboration, such as S12 
(Healthy Food Protocols), consistent and safe robot behavior is paramount. If a cobot is 
designed to lift heavy objects, it must do so reliably without dropping them or causing injury. 
Predictable behavior is also key; the robot should move and act in a way that humans can 
anticipate, avoiding sudden or unexpected actions. Transparent communication about any 
uncertainties or errors is also crucial. 

Multimodal Human-Robot Interaction 

Multimodal HRI refers to interactions that involve multiple communication channels, such as 
speech, gestures, facial expressions, touch, and even physiological signals. Integrating these 
modalities can create more natural, intuitive, and engaging interactions, particularly in social 
and collaborative contexts. These guidelines focus on leveraging multiple modalities effectively 
in the MUSAE scenarios. The following guidelines are particularly relevant for scenarios such 
as S6, S7, S10, and S11. 

Guideline:  Choose modalities that are appropriate for the task, context, and user preferences. 

The best combination of modalities depends on the specific situation. Consider the strengths 
and weaknesses of each modality and how they can complement each other. For example, 
speech is good for conveying complex information, while gestures are useful for providing 
spatial cues or demonstrating actions. Touch can be powerful for conveying emotion or 
providing feedback, but it also raises important ethical and safety considerations. Consider also 
the user's abilities and preferences; for example, some users may be more comfortable with 
voice control, while others might prefer touch or gesture-based interfaces. 

Relevant literature 

●​ Oviatt (2003) provides a foundational understanding of multimodal interface design, 
highlighting the benefits of combining different input modalities to create more robust 
and user-friendly systems. They emphasise the importance of considering the cognitive 
load associated with different modalities and designing interfaces that minimize user 
effort. This is relevant to make robots more accessible. 

●​ Su et al., (2023) contributed a more recent comprehensive overview of the field of 
multimodal HRI, covering a wide range of modalities and interaction scenarios. It 
discusses the challenges and opportunities associated with designing, implementing, 
and evaluating multimodal HRI systems, providing valuable guidance for researchers 
and practitioners. 

Scenario Examples 

●​ In S6 (Holobiont Futures), a social robot educating about the microbiome might 
primarily use speech and facial expressions, but also incorporate gestures to point out 
features on a visual display or use changes in its external texture or color to represent 
different types of microbes. 
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●​ In S10 (The Cooking Ape Institute), a smart kitchen system could combine voice 
control for hands-free operation with visual feedback on a screen and tactile feedback 
through haptic devices to guide the user through a recipe. 

●​ In S11 (Poetry of Nutrition), a robot therapist might use a combination of speech, 
touch, and physiological sensing to interact with users. For example, the robot might 
offer a comforting touch while speaking in a soothing voice and monitoring the user's 
heart rate to assess their emotional state. 

Guideline: Ensure seamless and coherent integration of modalities. 

Avoid treating each modality as an isolated channel. Instead, strive for a cohesive and 
integrated experience where the different modalities work together synergistically to convey 
meaning and facilitate interaction. For example, a robot's speech should be synchronised with 
its lip movements (if it has a face) and gestures. The timing and coordination of different 
modalities are crucial for creating a natural and intuitive interaction. 

Relevant literature 

●​ Bolt (1980) seminal work demonstrated the power of combining speech and gesture for 
interacting with computer systems. While focused on human-computer interaction, the 
principles of multimodal integration outlined in this paper are highly relevant to HRI, 
particularly for scenarios involving direct manipulation or spatial tasks. 

●​ Cohn et al. (2016) offer a theoretical framework for understanding the complexities of 
multimodal communication, particularly relevant to visual narratives like comics, which 
extends beyond the scope of traditional multimodal theories. While traditional theories 
often focus on interactions where only one modality utilizes combinatorial structure (like 
syntax in language), Cohn's framework, building on Jackendoff's (2002) parallel 
architecture, addresses situations where multiple modalities can employ complex 
grammatical sequences. It is like a blueprint for understanding interactions where 
speech, gestures, and visual sequences can all carry intricate meanings, similar to how 
different input modalities in HRI, as discussed by Oviatt (2003) and Su et al. (2023), 
must be integrated to minimise cognitive load and create a natural user experience. 

Scenario Examples 

●​ In S7 (What the World Eats), if a robot is explaining how it handles food, its verbal 
explanation should be accompanied by corresponding movements or visual 
demonstrations. 

●​ In S11 (Poetry of Nutrition), a robot therapist's comforting words should be 
synchronized with appropriate facial expressions and a gentle tone of voice. If the robot 
offers a physical touch, it should be timed appropriately with the verbal and emotional 
context. 

Guideline: Design for redundancy and complementarity. 
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Use multiple modalities to reinforce important information or to provide alternative ways of 
interacting. This can improve robustness (if one modality fails, others can compensate) and 
accessibility (users can choose the modality that best suits their needs and preferences). For 
example, a robot could provide both spoken and visual instructions, or it could accept both 
voice commands and touch input. Complementary modalities work together to enhance the 
overall interaction, such as using gestures to clarify spoken instructions or providing haptic 
feedback to reinforce visual cues. 

Relevant literature 

●​ Turk et al., (2014) provides a review that highlights the importance of redundancy and 
complementarity in multimodal interface design. It discusses how different modalities 
can be used to reinforce each other, compensate for each other's weaknesses, or 
provide alternative interaction pathways. These principles are directly applicable to the 
design of multimodal HRI systems. 

Scenario Examples 

●​ In S6 (Holobiont Futures), a social robot could provide information about the 
microbiome both verbally and visually, using diagrams or animations to reinforce the 
spoken explanation. 

●​ In S10 (The Cooking Ape Institute), a smart kitchen system could accept both voice 
commands and touch input, allowing users to choose their preferred mode of interaction. 
The system could also provide feedback through multiple modalities, such as displaying 
information on a screen, speaking aloud, and providing haptic feedback through a 
vibrating countertop. 

Guideline: Provide appropriate feedback across modalities. 

Feedback is crucial for letting users know that their input has been received and understood, 
and for guiding them through the interaction. Multimodal feedback can be more informative and 
engaging than feedback delivered through a single channel. For example, a robot could provide 
visual feedback (e.g., a change in its facial expression or a light signal), auditory feedback (e.g., 
a confirmation sound or a spoken response), and tactile feedback (e.g., a vibration or a gentle 
touch) to acknowledge a user's command. 

Relevant literature 

●​ Haptic Feedback: Various works on haptic feedback, such as those by Jones & Sarter 
(2008) and others, provide insights into how tactile feedback can be used to enhance 
user interfaces and improve task performance. This is particularly relevant for scenarios 
involving physical interaction with robots, such as S11 and S12. 

●​ Visual and Auditory Feedback: Research on visual and auditory feedback in HCI, 
such as that by Brewster et al. (2003) and others, provides guidance on how to design 
effective feedback mechanisms using these modalities. This is relevant to all scenarios 
involving multimodal interaction. 
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Scenario Examples 

●​ In S9 (From Farm to Table), a drone could provide feedback to the farmer through 
visual displays on a control panel, auditory alerts, and even haptic feedback through a 
vibrating controller, indicating, for example, that it has successfully identified a target 
area or that its battery is low. 

●​ In S11 (Poetry of Nutrition), a robot therapist could provide feedback through a 
combination of modalities. For example, it might nod its head and say "I understand" to 
acknowledge a user's statement, while also displaying a calming color on its body and 
gently touching the user's arm (if appropriate). 

Guideline: Consider the cognitive load associated with different modalities and combinations. 

Processing information from multiple modalities can be cognitively demanding. It is 
recommended to avoid overloading the user with too much information or too many complex 
interactions. The cognitive load should be appropriate for the task and the user's capabilities. 
For example, a simple task might only require simple unimodal feedback, while a more complex 
task might benefit from more elaborate multimodal feedback – but only if it does not overwhelm 
the user. 

Relevant literature 

●​ Sweller (1988) introduced the concept of cognitive load theory, which has had a 
significant impact on the design of instructional materials and user interfaces. The theory 
suggests that working memory has limited capacity, and that instructional design should 
aim to minimise extraneous cognitive load to facilitate learning and performance. These 
principles can be applied to the design of multimodal HRI, ensuring that the interaction 
doesn't overwhelm the user's cognitive resources. 

●​ Mayer & Moreno (2003) provide specific guidelines for reducing cognitive load in 
multimedia learning environments, based on cognitive load theory. Many of these 
guidelines, such as the modality principle (presenting words as audio narration rather 
than as visual text) and the redundancy principle (avoiding unnecessary repetition of 
information across modalities), are also relevant to the design of multimodal HRI. 

Scenario Examples 

●​ In S10 (The Cooking Ape Institute), a smart kitchen system should avoid bombarding 
the user with too much information at once. Instructions should be presented in a clear 
and concise manner, and the system should avoid unnecessary interruptions or 
distractions. 

●​ In S6 (Holobiont Futures), a social robot teaching about the microbiome should 
carefully manage the amount of information it provides at any given time, using a 
combination of modalities that is engaging but not overwhelming. 
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3) Evaluation Metrics for Human-Robot Interaction 
Evaluating the effectiveness of human-robot interaction (HRI) is essential to ensure that the 
robotic systems developed within the MUSAE project are not only technologically advanced but 
also user-friendly, engaging, and truly beneficial to individuals and communities. This section 
outlines key performance metrics for evaluating HRI, categorised for clarity, and explained in a 
way that is accessible to a broad audience. Each metric is contextualised within the MUSAE 
scenarios to illustrate its relevance. 

Task Performance Metrics 

These metrics assess how well the human-robot team performs specific tasks. They provide 
objective measures of efficiency and effectiveness. 

Efficiency 

Completion Time: This metric measures the time it takes to complete a given task, either by 
the robot working alone or by the human and robot working together. It is like a stopwatch 
measuring how fast a certain task is accomplished. 

●​ In S9 (From Farm to Table), we might measure how long it takes a bio-mechanical 
harvesting robot to harvest a field of crops. A shorter time generally means the robot is 
more efficient. 

●​ In S12 (Healthy Food Protocols), we could measure the time it takes for a 
human-robot team to plant a section of an urban farm. If the team is faster than a human 
working alone, it suggests the robot is effectively assisting the human. 

●​ In S7 (What the World Eats) we can measure the time it takes for robots to complete 
tasks related to food processing, such as sorting, packaging, or preparing ingredients. 

Faster completion times generally indicate higher efficiency. However, speed should always be 
balanced with safety and accuracy. We would not want a robot to work so fast that it makes 
mistakes or puts people at risk. It can also be useful to assess whether robots in S6 (Holobiont 
Futures) and S11 (Poetry of Nutrition) correctly interpret a user's requests. 

Resource Utilisation: This metric quantifies the resources used during task execution, such as 
energy, materials, or consumables. It is like checking the robot's fuel gauge or how much 
material it uses to do its job. Lower resource utilisation generally indicates higher efficiency and 
sustainability. 

●​ In S5 (One Health Recipes), we might measure how much energy a "Robot Guardian 
of Nature" uses while patrolling an ecosystem. A robot that can patrol for longer periods 
on a single charge is more efficient. 

●​ In S12 (Healthy Food Protocols) we can measure the amount of water used by a 
robotic system for precision irrigation in an urban farm. 

●​ In S11 (Poetry of Nutrition), we could look at how much material an edible robot is 
made of or how much energy a robot chef uses during food preparation. 
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Accuracy 

Error Rate: This metric measures the frequency or severity of errors made by the robot while 
performing a task. It is like counting the number of mistakes the robot makes. 

●​ In S7 (What the World Eats), we might measure the percentage of produce that gets 
damaged by a soft robotic food handling system. A lower percentage means the robot is 
handling the food more carefully. 

●​ In S12 (Healthy Food Protocols), we could measure how often a cobot deviates from a 
predefined planting pattern in an urban farm. 

●​ In S11 (Poetry of Nutrition), we can use this metric to evaluate the ability of robots to 
correctly follow a recipe when used in the kitchen, or to follow instructions in a 
therapeutic setting. 

Lower error rates are generally better, especially when robots are handling delicate items like 
food, or when they are involved in tasks where precision is crucial, such as in S6 (Holobiont 
Futures) to assess whether social robots understand instructions and requests. 

Precision: This metric assesses how consistent and repeatable the robot's actions are. It is like 
checking if the robot can do the same thing the same way multiple times. 

●​ In S9 (From Farm to Table), we might measure how consistently a robotic planting 
system spaces seeds and plants them at the correct depth. Consistent spacing and 
depth are important for optimal plant growth. It can also be used to evaluate drones' 
ability to deliver targeted treatments, such as fertilizers or pesticides, to specific plants or 
areas within the farm. 

●​ In S7 (What the World Eats) we can measure how consistently robots can identify and 
sort different types of produce based on size, shape, color, or other characteristics. 

High precision is important for tasks that require uniformity, like planting seeds or assembling 
products. It ensures that the robot's actions are reliable and predictable. 

Safety Metrics 

These metrics focus on the safety of the interaction between humans and robots. Safety is 
crucial in all scenarios, but it is especially important when robots and humans are expected to 
work closely together. 

Collision Rate 

Frequency of Collisions measures the number of times the robot bumps into humans or other 
objects in its environment. It is like counting the number of accidents or near misses. 

In S12 (Healthy Food Protocols), where cobots work alongside humans in urban farms, this 
metric is critical. We want to make sure that the robots can move around safely without 
bumping into people or damaging plants. A lower collision rate means the interaction is safer. 
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The same applies when considering robots used in therapy in S11 (Poetry of Nutrition) or 
social robots in S6 (Holobiont Futures). 

A lower collision rate indicates a safer system, as we want to minimise (or remove) the risk of 
robots causing harm to people or damaging property. 

Safety System Activation 

Frequency of Safety Stops: This metric measures how often the robot's safety mechanisms 
are triggered. These mechanisms are designed to prevent accidents, like an emergency stop 
button or a sensor that detects when a human is too close. 

Frequent safety stops might mean that the robot's control system is too sensitive or that the 
robot's movements are not well-adapted to the environment. This is particularly important for 
cobots in S12 (Healthy Food Protocols), where robots and humans are working in close 
proximity, and for robots used in therapy in S11 (Poetry of Nutrition). 

While safety stops are essential for preventing accidents, frequent activations can disrupt 
workflow. The goal is to find a balance between safety and efficiency. 

Human-Robot Interaction Quality Metrics 

These metrics assess the quality of the interaction from the human perspective. They focus on 
subjective factors like how much a person trusts a robot, how difficult it is to work with the robot, 
and how satisfied they are with the overall experience. 

Trust 

Level of Trust in the Robot: This measures how much a person trusts the robot to perform its 
tasks correctly, safely, and reliably. Intuitively, it is like gauging someone's confidence in the 
robot's abilities. High levels of trust are important in all scenarios. For example, in S11 (Poetry 
of Nutrition), patients need to trust that the robot therapist is providing appropriate guidance 
and support. In S5 (One Health Recipes), people need to trust that the robot guardians are 
effectively protecting the environment. Farmers in S9 (From Farm to Table) need to trust 
robots to perform agricultural tasks correctly. Overall, trust is crucial for the acceptance and 
adoption of robotic technology. If people do not trust robots, they are less likely to use them or 
rely on them. 

Workload 

Perceived Mental and Physical Workload: This measures how much mental and physical 
effort a person feels is required to interact with the robot. The idea is assessing how hard 
someone feels they are working, both mentally and physically. Lower perceived workload is 
generally better. We want robots to make tasks easier and less demanding for humans, not 
more difficult. In S9 (From Farm to Table), a well-designed interface for controlling and 
monitoring multiple robots should make the farmer's job easier, not harder. The goal is to 
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reduce the mental workload associated with managing a complex agricultural operation. 
Similarly, in S12 (Healthy Food Protocols), cobots should reduce the physical workload of 
farmers by handling strenuous or repetitive tasks. 

Usability 

Ease of Use and Learnability: This measures how easy it is for people to learn how to use the 
robot and its interface, and how efficiently they can interact with it. Intuitively, it is like assessing 
how user-friendly the robot is. Good usability is crucial for user acceptance and adoption. If a 
robot is difficult to use or understand, people are less likely to use it, even if it's technologically 
advanced. In S10 (The Cooking Ape Institute), the interface for interacting with AI-driven 
recipe systems and smart kitchen appliances should be intuitive and easy to learn. Even people 
who are not tech-savvy should be able to use the system effectively. User interfaces for 
controlling and programming robots in S9 (From Farm to Table) should be designed to be 
user-friendly and require minimal training. 

Social Acceptance 

Perceived Social Presence: This measures the extent to which people perceive the robot as a 
social being, rather than just a machine. Put simply, it is like assessing how much the robot 
feels like a companion or a collaborator, rather than just a tool. This is particularly important for 
social robots, like those in S6 (Holobiont Futures), which are designed to educate and engage 
with people. To be effective, these robots need to be perceived as more than just machines; 
they need to have a degree of social presence. Similarly, robot therapists in S11 (Poetry of 
Nutrition) need to establish a social connection with users to build rapport and facilitate 
therapeutic interactions. Higher perceived social presence can lead to more natural and 
engaging interactions, especially for robots designed for social interaction. 

User Comfort and Satisfaction: This measures how comfortable and satisfied people feel with 
the overall interaction. Positive user experiences are essential for the long-term adoption and 
success of robotic technology. High levels of comfort and satisfaction are important in all 
scenarios. For example, if people are uncomfortable working alongside cobots in S12 (Healthy 
Food Protocols), they are less likely to accept them in the workplace. In S11 (Poetry of 
Nutrition), user satisfaction with robot therapists is crucial for the success of the therapy. 

Context-Specific Metrics 

These metrics are tailored to the specific goals and context of individual MUSAE scenarios. 
They help assess the effectiveness of robots in achieving specific outcomes related to 
education, therapy, environmental impact, or community engagement. 

Educational Impact (S6, S10, S11) 

Knowledge Gain: This measures how much a person's knowledge about a particular topic 
increases after interacting with a robot. Intuitively, it is like giving someone a test before and 
after interacting with the robot to see how much they have learned. This is a key metric for S6 
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(Holobiont Futures), where social robots are used as educational tools to teach people about 
the microbiome. It's also relevant to S10 (The Cooking Ape Institute), where users learn about 
healthy cooking through smart kitchen appliances and AI-driven recipe systems. S11 (Poetry of 
Nutrition) can also use this metric to evaluate how users learn from educational games. 
Demonstrating knowledge gain is crucial for validating the effectiveness of robots as 
educational tools. 

Therapeutic Effectiveness (S11): 

Improvement in Well-being: This measures changes in a person's emotional state, stress 
levels, or other relevant health indicators after interacting with a robot. Intuitively, it is like 
tracking someone's mood or anxiety levels to see if the robot is having a positive impact. This is 
the central metric for S11 (Poetry of Nutrition), where soft robots are used as therapeutic 
companions. Demonstrating improvements in well-being is essential for validating the use of 
robots in therapeutic settings. 

Environmental Impact (S5, S7, S8, S9, S12): 

Ecosystem Health Indicators: This measures changes in various environmental parameters, 
such as biodiversity, soil health, water quality, or other relevant environmental parameters. It is 
like taking the pulse of the environment to see if it's getting healthier. This is crucial for S5 (One 
Health Recipes), where robots are used to monitor and protect ecosystems. It's also relevant 
to scenarios involving sustainable agriculture, such as S9 (From Farm to Table), S7 (What the 
World Eats), S8 (Patterns that Persist) and S12 (Healthy Food Protocols). Overall, 
demonstrating positive environmental impacts is essential for validating the use of robots in 
promoting ecological sustainability. 

Importance: Community Engagement (S12): 

Participation Rate: This measures the level of community involvement in activities facilitated 
by robots, such as urban farming initiatives. It's like counting how many people are getting 
involved in community projects. This is a key metric for S12 (Healthy Food Protocols), which 
emphasizes community building and shared responsibility for food production. Higher 
participation rates suggest that the technology is effectively engaging the community and 
fostering a sense of collective ownership. 

Together, these metrics provide a simple and intuitive framework for evaluating the success of 
HRI within the MUSAE project. By carefully selecting and applying these metrics, developers 
can gain valuable insights into the effectiveness of their robotic systems, identify areas for 
improvement, and ensure that the technologies developed are truly beneficial to users and 
aligned with the project's overarching vision. 

It is important to note that the specific methods for measuring these metrics will vary depending 
on the context and available resources. Some metrics might be measured through 
questionnaires and interviews, asking people about their experiences and opinions. Others 
might be measured using sensors, tracking physiological data like heart rate or brain activity. 
Behavioral observation, where researchers watch and record how people interact with robots, 
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can also be a valuable tool. Finally, automated data logging, where the robots themselves 
record data about their performance and interactions, can provide objective insights. The choice 
of metrics should be driven by the research questions and the specific goals of each scenario. 
By combining different measurement methods, we can gain a comprehensive understanding of 
the complex interplay between humans and robots in the applications of the envisioned 
scenarios. 

Conclusions 
This deliverable provided an intuitive and accessible framework for designing and evaluating 
human-machine interaction (HMI) within the MUSAE project, with a particular focus on 
human-robot interaction (HRI). By conducting a thorough technological review of the 12 MUSAE 
scenarios, we have identified a diverse array of technologies that underpin the project's vision 
for the future of food, including generative AI, conversational AI, mixed reality (MR), wearables, 
haptic technologies, data analytics, blockchain, Internet of Things (IoT), robotics, computer 
vision, drones, audio computing, gamification, affective computing, and neurotechnology. These 
technologies, often integrated and interconnected, are envisioned to play a crucial role in 
promoting sustainability, enhancing human well-being, and fostering a more harmonious 
relationship between humans, technology, and the environment. 

Our analysis has revealed a strong emphasis on data-driven decision-making across the 
scenarios, with AI and machine learning being employed to optimise resource use, improve 
food production, personalise nutrition, and even identify potential risks like food fraud. The 
integration of technology with traditional ecological knowledge and community values is another 
recurring theme, highlighting the importance of a holistic approach that respects both 
technological advancements and cultural heritage. 

Recognising the centrality of HMI in realizing the projects’ vision, we have provided a set of 
detailed interaction guidelines, drawing upon established HCI and HRI principles. These 
guidelines address key aspects of robot design, including appearance and embodiment, 
behavior and movement, communication and social interaction, and human-robot collaboration, 
with a dedicated section on multimodal interaction. By emphasising principles such as 
user-centered design, personalisation, transparency, explainability, and ethical considerations, 
these guidelines aim to ensure that the robotic systems developed are not only effective but 
also intuitive, engaging, accessible, and aligned with human values. 

To evaluate the effectiveness of HRI within the project, we have anticipated a comprehensive 
set of metrics, encompassing task performance, safety, interaction quality, and context-specific 
indicators. These metrics, contextualised within the various scenarios, provide a framework for 
assessing the impact of robotic systems on efficiency, safety, user experience, education, 
therapy, environmental sustainability, and community engagement. By carefully selecting and 
applying these metrics, developers can gain valuable insights into the strengths and 
weaknesses of their designs, iterate on their implementations, and ultimately ensure that the 
technologies developed are truly beneficial to users. 
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